225 resultados para Container loading problem
Resumo:
The breakdown of the usual method of Fourier transforms in the problem of an external line crack in a thin infinite elastic plate is discovered and the correct solution of this problem is derived using the concept of a generalised Fourier transform of a type discussed first by Golecki [1] in connection with Flamant's problem.
Resumo:
The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.
Resumo:
The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.
Resumo:
The plastic response of a segment of a simply supported orthotropic spherical shell under a uniform blast loading applied on the convex surface of the shell is presented. The blast is assumed to impart a uniform velocity to the shell surface initially. The material of the shell is orthotropic obeying a modified Tresca yield hypersurface conditions and the associated flow rules. The deformation of the shell is determined during all phases of its motion by considering the motion of plastic hinges in different regimes of flow. Numerical results presented include the permanent deformed configuration of the shell and the total time of shell response for different degrees of orthotropy. Conclusions regarding the plastic behaviour of spherical shells with circumferential and meridional stiffening under uniform blast load are presented.
Resumo:
In this paper, the results on primal methods for Bottleneck Linear Programming (BLP) problem are briefly surveyed, the primal method is presented and the degenerate case related to Bottleneck Transportation Problem (BTP) is explicitly considered. The algorithm is based on the idea of using auxiliary coefficients as is done by Garfinkel and Rao [6]. The modification presented for the BTP rectifies the defect in Hammer's method in the case of degenerate basic feasible solution. Illustrative numerical examples are also given.
Resumo:
The two-impurity Kondo problem is studied by use of perturbative scaling techniques. The physics is determined by the interplay between the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the two impurity spins and the Kondo effect. In particular, for a strong ferromagnetic RKKY interaction the susceptibility exhibits three structures as the temperature is lowered, corresponding to the ferromagnetic locking together of the two impurity spins followed by a two-stage freezing out of their local moments by the conduction electrons due to the Kondo effect.
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
The usual assumption made in time minimising transportation problem is that the time for transporting a positive amount in a route is independent of the actual amount transported in that route. In this paper we make a more general and natural assumption that the time depends on the actual amount transported. We assume that the time function for each route is an increasing piecewise constant function. Four algorithms - (1) a threshold algorithm, (2) an upper bounding technique, (3) a primal dual approach, and (4) a branch and bound algorithm - are presented to solve the given problem. A method is also given to compute the minimum bottle-neck shipment corresponding to the optimal time. A numerical example is solved illustrating the algorithms presented in this paper.
Resumo:
By deriving the equations for an error analysis of modeling inaccuracies for the combined estimation and control problem, it is shown that the optimum estimation error is orthogonal to the actual suboptimum estimate.
Resumo:
The time minimising assignment problem is the problem of finding an assignment of n jobs to n facilities, one to each, which minimises the total time for completing all the jobs. The usual assumption made in these problems is that all the jobs are commenced simultaneously. In this paper two generalisations of this assumption are considered, and algorithms are presented to solve these general problems. Numerical examples are worked out illustrating the algorithms.
Resumo:
By applying the theory of the asymptotic distribution of extremes and a certain stability criterion to the question of the domain of convergence in the probability sense, of the renormalized perturbation expansion (RPE) for the site self-energy in a cellularly disordered system, an expression has been obtained in closed form for the probability of nonconvergence of the RPE on the real-energy axis. Hence, the intrinsic mobility mu (E) as a function of the carrier energy E is deduced to be given by mu (E)= mu 0exp(-exp( mod E mod -Ec) Delta ), where Ec is a nominal 'mobility edge' and Delta is the width of the random site-energy distribution. Thus mobility falls off sharply but continuously for mod E mod >Ec, in contradistinction with the notion of an abrupt 'mobility edge' proposed by Cohen et al. and Mott. Also, the calculated electrical conductivity shows a temperature dependence in qualitative agreement with experiments on disordered semiconductors.
Resumo:
Using Hilbert theory and Mindlin's couple stress theory, the problem of two-dimensional circular inhomogeneity (when the inserted material is of different size than the size of the cavity and having different elastic constants) is studiedin this paper. Stress could be bounded at infinity. The formulation is valid also for regions other then the circular ones when the matrix is finite has also been tackled. Numerical results are in conformity with the fact that the effect of couple stresses is negligible when the ratio of the smallest dimension of the body to the cahracteristic length is large.
Resumo:
By deriving the equations for an error analysis of modeling inaccuracies for the combined estimation and control problem, it is shown that the optimum estimation error is orthogonal to the actual suboptimum estimate.
Resumo:
In this paper a three-dimensional analysis for statics and dynamics of a class of simply supported rectangular plates made up of micropolar elastic material is presented. The solution is in the form of series, in which each term is explicitly determined. For free vibrations, the frequencies are obtained by the solution of a closed form characteristic equation.