252 resultados para Conformation Changes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SecB, a soluble cytosolic chaperone component of the Secexport pathway, binds to newly synthesized precursor proteins and prevents their premature aggregation and folding and subsequently targets them to the translocation machinery on the membrane. PreMBP, the precursor form of maltose binding protein, has a 26-residue signal sequence attached to the N-terminus of MBP and is a physiological substrate of SecB. We examine the effect of macromolecular crowding and SecB on the stability and refolding of denatured preMBP and MBP. PreMBP was less stable than MBP (ΔTm =7( 0.5 K) in both crowded and uncrowded solutions. Crowding did not cause any substantial changes in the thermal stability ofMBP(ΔTm=1(0.4 K) or preMBP (ΔTm=0(0.6 K), as observed in spectroscopically monitored thermal unfolding experiments. However, both MBP and preMBP were prone to aggregation while refolding under crowded conditions. In contrast to MBP aggregates, which were amorphous, preMBP aggregates form amyloid fibrils.Under uncrowded conditions, a molar excess of SecB was able to completely prevent aggregation and promote disaggregation of preformed aggregates of MBP. When a complex of the denatured protein and SecB was preformed, SecB could completely prevent aggregation and promote folding of MBP and preMBP even in crowded solution. Thus, in addition to maintaining substrates in an unfolded, export-competent conformation, SecB also suppresses the aggregation of its substrates in the crowded intracellular environment. SecB is also able to promote passive disaggregation of macroscopic aggregates of MBP in the absence of an energy source such as ATP or additional cofactors. These experiments also demonstrate that signal peptide can reatly influence protein stability and aggregation propensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of the synthetic self-complementary octamer d(G-G-T-A-T-A-C-C) and its 5-bromouracil-containing analogue have been refined to R values of 20% and 14% at resolutions of 1·8 and 2·25 Å, respectively. The molecules adopt an A-DNA type double-helical conformation, which is minimally affected by crystal forces. A detailed analysis of the structure shows a considerable influence of the nucleotide sequence on the base-pair stacking patterns. In particular, the electrostatic stacking interactions between adjacent guanine and thymine bases produce symmetric bending of the double helix and a major-groove widening. The sugar-phosphate backbone appears to be only slightly affected by the base sequence. The local variations in the base-pair orientation are brought about by correlated adjustments in the backbone torsion angles and the glycosidic orientation. Sequence-dependent conformational variations of the type observed here may contribute to the specificity of certain protein-DNA interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CIsH20N3Oa+.C1-.H2 O, M r = 395, orthorhombic, Pn21a, a = 7.710 (4), b = 11.455 (3), c -- 21.199 (3)/k, Z = 4, V = 1872.4/k 3, D m = 1.38, D C = 1.403 g cm -3, F(000) = 832, g(Cu Kct) = 20.94 cm -l. Intensities for 1641 reflections were measured on a Nonius CAD-4 diffractometer; of these, 1470 were significant. The structure was solved by direct methods and refined to an R index of 0.045 using a blockdiagonal least-squares procedure. The angle between the least-squares planes through the benzene rings is 125.0 (5) ° and the side chain is folded similarly to one of the independent molecules of imipramine hydrochloride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pivaloyl-L-Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of beta -turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II beta-turn conformations are about 2 kcal mol-1 more stable than Type III structures. A crystallographic study has established the Type II beta-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, beta = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II -turn conformation is stabilized by an intramolecular 4 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are Pro = -57.8°, Pro = 139.3°, Aib = 61.4°, and Aib = 25.1°. The Type II beta-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the molecular mechanisms involved in ionophore-mediated cation transport would be valuable for under-standing many essential functions of biological membranes1−3. Cations are transported in several stages, such as formation of the ionophore−cation complex, diffusion across the cell membrane and subsequent release of the cation. Several conformational rearrangements are involved in this process, and so a detailed understanding of all the conformational possibilities of the ionophore seems to be essential for elucidating the molecular mechanism of ion transport. We are carrying out spectroscopic and crystallographic studies to explore the possible conformational stages of ionophores by complexing them, in different solvents, with cations of various sizes and charges. We report here a novel conformation of the ionophore valinomycin in its barium complex. It can be described as an extended depsipeptide chain, without internal hydrogen bonds, wound in the form of an ellipse with the two barium ions located at the foci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several N,N-²-arylalkyl thioureas were examined with 1H-NMR and i.r. spectra in order to study the conformation of the -NHCSNH- group. The influence of temperature and substituents on the chemical shift of the N---H protons has been investigated. Formation of a strong intramolecular hydrogen bond stabilizes the trans-cis conformation for most systems, while for the others the prevalence of different rotational isomers can be postulated. The influence of the steric effect on hydrogen bonding and molecular conformation is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible conformations of sialic acid were analysed using semi-empirical potential functions. The solid state conformation has approx. 0.2 kcal/mol higher energy than the minimum energy conformation. These studies suggest that in solution sialic acid may exist preponderantly in two different conformations which differ in the orientation of the terminal hydroxymethyl group of glycerol side-chain. The present model is consistent with 1H- and 13C-NMR data, but differs from the earlier models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pro-Gly segments in peptides and proteins are prone to adopt the 0-turn conformation. This paper reports experimental data for the presence of this conformation in a linear tripeptide N-acetyl-L-prolylglycyl-L-phenylalanineb oth in the solid state and in solution. X-ray diffraction data on the tripeptide crystal show that it exists in the type I1 0-turn conformation. CD and proton NMR data show that this conformation persists in trifluoroethanol and methanol solutions in equilibrium with the nonhydrogen-bonded structures. Isomerization around the acetyl-prolyl bond is seen to take place in dimethyl sulfoxide solutions of the tripeptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of a detailed Monte Carlo study, it is found that considerable molecular reorientation occurs on the formation of the glassy state of isopentane. The reorientational contribution to the increase in the intermolecular energy on vitrification is at least 50% and reorientational freezing plays a major role near the glass transition. Annealing affects the structure of the glass by a rearrangement involving molecular reorientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

4..T~iouridine, a thionucleoside present in the transfer RNA of the free living, nitrogen-fixing ?actenu~ Azotobacter »inelandii shows a culture condition dependent change. When thebacterium IS grown Intheabsen~e ofanyfixed nit~ogen thetRNA contains 4-thiouridine to theextent of 45% of the total sulphur Incorporated. This gets reduced to 5%when the bacterium is grown in the presen~e of.e~ces~ ofamm~nium salt.Instead, a new thionucleoside which appears to be a derivative of 4-thloundlne IS found In the tRNA to the extent of 28%of the total sulphur incorporated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

pBR322 form V DNA is a highly torsionally strained molecule with a linking number of zero. We have used sequence- specific DNA methylases as probes for B-DNA in this molecule, exploiting the inability of methylases to methylate single-stranded DNA and Z-DNA, both of which are known to occur in form V DNA. Some sequences in form V DNA were shown to be totally in the B-form, others were totally in an altered, unmethylatable conformation, while still other sites appeared to exist partly in altered and partly in normal B-conformation. Some potential Z-forming sequences (alternating pyrimidine/purine) of less than seven base-pairs were not in the Z conformation in form V DNA, whereas others did adopt an altered structure, indicating a modulating influence of flanking sequences. Furthermore, regions of imperfect alternating pyrimidine/purine structure were sometimes capable of adopting an altered structure. In addition, some regions of altered structure had no apparent Z-forming sequences, nor were they in polypurine stretches, which have also been proposed to form left-handed DNA. These non-B-DNA conformations may represent novel left-handed helical structures or sequences that become single stranded under torsional strain. Long regions of either altered (unmethylatable) DNA or B-DNA were not always observed. In fact, one region showed three transitions between B-like DNA and altered structure within 26 base-pairs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For an understanding of the cation selectivity and general binding characteristics of macrotetralide antibiotic nonactin (NA) with ions of different sizes and charges, the nature of binding of divalent cation, Ca2+, to NA and conformation of the NA-Ca2+ complex have been studied by use of 270-MHz proton nuclear magnetic resonance ('H NMR) and carbon-13 nuclear magnetic resonance (13C NMR). The calcium ion induced significantly large changes in chemical shifts for H7, H2, H3, and H5 protons of NA and relatively small changes for H18 and H2' protons. Changes in I3C chemical shift were quite large for carbonyl carbon, C,; it is noteworthy that in the NA-K+ complex, H2 and H2' protons practically do not show any change during complexation and carbonyl carbon shows a much smaller chemical shift change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the thermal decomposition of orthorhombic ammonium perchlorate (AP) at 230°C, where the decomposition is only up to 30 wt %, there is an accumulation in the solid of acids, the concentration of which increases up to 15% decomposition, after which it decreases till it reaches the original value. Similar observations have been made in the polystyrene (PS)/AP propellant systems. Aging studies of PS/AP propellants have been carried out earlier [1], where it has been shown that for the aged propellants the thermal decomposition (TD) rate at 230°C and 260°C and ambient pressure burning rate (Image ) both increase and this increase is due to the formation of reactive intermediate “polystyrene peroxide (PSP).” In the present studies it has been observed that during the aging of the propellant at 150°C, the acid is formed and gets accumulated in the propellant, which may also be responsible for the increase in TD rate and perhaps may be more effective than PSP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum TIM (PfTIM) is unique in possessing a Phe residue at position 96 in place of the conserved Ser that is found in TIMs from the majority of other organisms. In order to probe the role of residue 96, three PfTIM mutants, F96S, F96H and F96W, have been biochemically and structurally characterized. The three mutants exhibited reduced catalytic efficiency and a decrease in substrate-binding affinity, with the most pronounced effects being observed for F96S and F96H. The k(cat) values and K-m values are (2.54 +/- 0.19) x 10(5) min(-1) and 0.39 +/- 0.049 mM, respectively, for the wild type; (3.72 +/- 0.28) x 10(3) min(-1) and 2.18 +/- 0.028 mM, respectively, for the F96S mutant;(1.11 +/- 0.03) x 10(4) min(-1) and 2.62 +/- 0.042 mM, respectively, for the F96H mutant; and (1.48 +/- 0.05) x 10(5) min(-1) and 1.20 +/- 0.056 mM, respectively, for the F96W mutant. Unliganded and 3-phosphoglycerate (3PG) complexed structures are reported for the wild-type enzyme and the mutants. The ligand binds to the active sites of the wild-type enzyme (wtPfTIM) and the F96W mutant, with a loop-open state in the former and both open and closed states in the latter. In contrast, no density for the ligand could be detected at the active sites of the F96S and F96H mutants under identical conditions. The decrease in ligand affinity could be a consequence of differences in the water network connecting residue 96 to Ser73 in the vicinity of the active site. Soaking of crystals of wtPfTIM and the F96S and F96H mutants resulted in the binding of 3PG at a dimer-interface site. In addition, loop closure at the liganded active site was observed for wtPfTIM. The dimer-interface site in PfTIM shows strong electrostatic anchoring of the phosphate group involving the Arg98 and Lys112 residues of PfTIM.