84 resultados para Conformal invariants
Resumo:
For an operator T in the class B-n(), introduced by Cowen and Douglas, the simultaneous unitary equivalence class of the curvature and the covariant derivatives up to a certain order of the corresponding bundle E-T determine the unitary equivalence class of the operator T. In a subsequent paper, the authors ask if the simultaneous unitary equivalence class of the curvature and these covariant derivatives are necessary to determine the unitary equivalence class of the operator T is an element of B-n(). Here we show that some of the covariant derivatives are necessary. Our examples consist of homogeneous operators in B-n(). For homogeneous operators, the simultaneous unitary equivalence class of the curvature and all its covariant derivatives at any point w in the unit disc are determined from the simultaneous unitary equivalence class at 0. This shows that it is enough to calculate all the invariants and compare them at just one point, say 0. These calculations are then carried out in number of examples. One of our main results is that the curvature along with its covariant derivative of order (0, 1) at 0 determines the equivalence class of generic homogeneous Hermitian holomorphic vector bundles over the unit disc.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We study giant magnons in the the D1-D5 system from both the boundary CFT and as classical solutions of the string sigma model in AdS(3) x S-3 x T-4. Re-examining earlier studies of the symmetric product conformal field theory we argue that giant magnons in the symmetric product are BPS states in a centrally extended SU(1 vertical bar 1) x SU(1 vertical bar 1) superalgebra with two more additional central charges. The magnons carry these additional central charges locally but globally they vanish. Using a spin chain description of these magnons and the extended superalgebra we show that these magnons obey a dispersion relation which is periodic in momentum. We then identify these states on the string theory side and show that here too they are BPS in the same centrally extended algebra and obey the same dispersion relation which is periodic in momentum. This dispersion relation arises as the BPS condition for the extended algebra and is similar to that of magnons in N = 4 Yang-Mills Yang-Mills.
Resumo:
The ground state and low energy excitations of the SU(m|n) supersymmetric Haldane–Shastry spin chain are analyzed. In the thermodynamic limit, it is found that the ground state degeneracy is finite only for the SU(m|0) and SU(m|1) spin chains, while the dispersion relation for the low energy and low momentum excitations is linear for all values of m and n. We show that the low energy excitations of the SU(m|1) spin chain are described by a conformal field theory of m non-interacting Dirac fermions which have only positive energies; the central charge of this theory is m/2. Finally, for ngreater-or-equal, slanted1, the partition functions of the SU(m|n) Haldane–Shastry spin chain and the SU(m|n) Polychronakos spin chain are shown to be related in a simple way in the thermodynamic limit at low temperatures.
Resumo:
The use of invariants is an important tool for analysis of distributed and concurrent systems modeled by Petri nets. For a large practical system, the computation of desired invariants by the existing techniques is a time-consuming task. This paper proposes a theoretical foundation for simplified computation of desired invariants. We provide invariant-preserving Petri net reduction rules followed by the conditions for the existence of invariants in various well-structured nets. If an invariant exists, it can be found directly from the net structure using the formulas derived, or by applying the existing techniques on the reduced net.
Resumo:
This paper proposes a novel and simple definition of general colored Petri nets. This definition is coherent with that of (uncolored) Petri nets, preserves the reflexivity of the original net and is extended to represent inhibitors. Also suggested are systematic and formal merging rules to obtain a well-formed structure of the extended colored Petri net by folding a given uncolored net. Finally, we present a technique to compute colored invariants by selecting colored RP-subnets. On the average, the proposed technique performs better than the existing ones. The analysis procedure is explained through an illustrative example of a three-level interrupt-priority-handler scheme.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
A Geodesic Constant Method (GCM) is outlined which provides a common approach to ray tracing on quadric cylinders in general, and yields all the surface ray-geometric parameters required in the UTD mutual coupling analysis of conformal antenna arrays in the closed form. The approach permits the incorporation of a shaping parameter which permits the modeling of quadric cylindrical surfaces of desired sharpness/flatness with a common set of equations. The mutual admittance between the slots on a general parabolic cylinder is obtained as an illustration of the applicability of the GCM.
Resumo:
A new conformal creation field cosmology is considered and it is found that a negative energy scalar field nonminimally coupled to the gravitational field gives rise to creation and, in contrast to Hoyle-Narlikar theory, no a priori assumption about the rate of creation is required to solve the field equations.
Resumo:
Distributed computing systems can be modeled adequately by Petri nets. The computation of invariants of Petri nets becomes necessary for proving the properties of modeled systems. This paper presents a two-phase, bottom-up approach for invariant computation and analysis of Petri nets. In the first phase, a newly defined subnet, called the RP-subnet, with an invariant is chosen. In the second phase, the selected RP-subnet is analyzed. Our methodology is illustrated with two examples viz., the dining philosophers' problem and the connection-disconnection phase of a transport protocol. We believe that this new method, which is computationally no worse than the existing techniques, would simplify the analysis of many practical distributed systems.
Resumo:
A simple method using a combination of conformal mapping and vortex panel method to simulate potential flow in cascades is presented. The cascade is first transformed to a single body using a conformal mapping, and the potential flow over this body is solved using a simple higher order vortex panel method. The advantage of this method over existing methodologies is that it enables the use of higher order panel methods, as are used to solve flow past an isolated airfoil, to solve the cascade problem without the need for any numerical integrations or iterations. The fluid loading on the blades, such as the normal force and pitching moment, may be easily calculated from the resultant velocity field. The coefficient of pressure on cascade blades calculated with this methodology shows good agreement with previous numerical and experimental results.
Resumo:
We introduce a one-dimensional version of the Kitaev model consisting of spins on a two-legged ladder and characterized by Z(2) invariants on the plaquettes of the ladder. We map the model to a fermionic system and identify the topological sectors associated with different Z2 patterns in terms of fermion occupation numbers. Within these different sectors, we investigate the effect of a linear quench across a quantum critical point. We study the dominant behavior of the system by employing a Landau-Zener-type analysis of the effective Hamiltonian in the low-energy subspace for which the effective quenching can sometimes be non-linear. We show that the quenching leads to a residual energy which scales as a power of the quenching rate, and that the power depends on the topological sectors and their symmetry properties in a non-trivial way. This behavior is consistent with the general theory of quantum quenching, but with the correlation length exponent nu being different in different sectors. Copyright (C) EPLA, 2010
Resumo:
We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.
Resumo:
We examine quark flavour mixing matrices for three and four generations using the recursive parametrization of U(n) and SU(n) matrices developed earlier. After a brief summary of the recursive parametrization, we obtain expressions for the independent rephasing invariants and also the constraints on them that arise from the requirement of mod symmetry of the flavour mixing matrix.
Resumo:
We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c = 0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.