162 resultados para Code-switching
Resumo:
A constant switching frequency current error space vector-based hysteresis controller for two-level voltage source inverter-fed induction motor (IM) drives is proposed in this study. The proposed controller is capable of driving the IM in the entire speed range extending to the six-step mode. The proposed controller uses the parabolic boundary, reported earlier, for vector selection in a sector, but uses simple, fast and self-adaptive sector identification logic for sector change detection in the entire modulation range. This new scheme detects the sector change using the change in direction of current error along the axes jA, jB and jC. Most of the previous schemes use an outer boundary for sector change detection. So the current error goes outside the boundary six times during sector change, in one cycle,, introducing additional fifth and seventh harmonic components in phase current. This may cause sixth harmonic torque pulsations in the motor and spread in the harmonic spectrum of phase voltage. The proposed new scheme detects the sector change fast and accurately eliminating the chance of introducing additional fifth and seventh harmonic components in phase current and provides harmonic spectrum of phase voltage, which exactly matches with that of constant switching frequency voltage-controlled space vector pulse width modulation (VC-SVPWM)-based two-level inverter-fed drives.
Resumo:
The crystal structure of beta-hydroxyacyl acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) has been determined at a resolution of 2.4 angstrom. PfFabZ has been found to exist as a homodimer (d-PfFabZ) in the crystals of the present study in contrast to the reported hexameric form (h-PfFabZ) which is a trimer of dimers crystallized in a different condition. The catalytic sites of this enzyme are located in deep narrow tunnel-shaped pockets formed at the dimer interface. A histidine residue from one subunit of the dimer and a glutamate residue from the other subunit lining the tunnel form the catalytic dyad in the reported crystal structures. While the position of glutamate remains unaltered in the crystal structure of d-PffabZ compared to that in b-PfFabZ, the histidine residue takes up an entirely different conformation and moves away from the tunnel leading to a His-Phe cis-trans peptide flip at the histidine residue. In addition, a loop in the vicinity has been observed to undergo a similar flip at a Tyr-Pro peptide bond. These alterations not only prevent the formation of a hexamer but also distort the active site geometry resulting in a dimeric form of FabZ that is incapable of substrate binding. The dimeric state and an altered catalytic site architecture make d-PfFabZ distinctly different from the FabZ structures described so far. Dynamic light scattering and size exclusion chromatographic studies clearly indicate a pH-related switching of the dimers to active hexamers. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserv.
Resumo:
Variation of switching frequency over the entire operating speed range of an induction motor (M drive is the major problem associated with conventional two-level three-phase hysteresis controller as well as the space phasor based PWM hysteresis controller. This paper describes a simple hysteresis current controller for controlling the switching frequency variation in the two-level PWM inverter fed IM drives for various operating speeds. A novel concept of continuously variable hysteresis boundary of current error space phasor with the varying speed of the IM drive is proposed in the present work. The variable parabolic boundary for the current error space phasor is suggested for the first time in this paper for getting the switching frequency pattern with the hysteresis controller, similar to that of the constant switching frequency voltage-controlled space vector PWM (VC-SVPWM) based inverter fed IM drive. A generalized algorithm is also developed to determine parabolic boundary for controlling the switching frequency variation, for any IM load. Only the adjacent inverter voltage vectors forming a triangular sector, in which tip of the machine voltage vector ties, are switched to keep current error space vector within the parabolic boundary. The controller uses a self-adaptive sector identification logic, which provides smooth transition between the sectors and is capable of taldng the inverter up to six-step mode of operation, if demanded by drive system. The proposed scheme is simulated and experimentally verified on a 3.7 kW IM drive.
Resumo:
Switching frequency variation over a fundamental period is a major problem associated with hysteresis controller based VSI fed IM drives. This paper describes a novel concept of generating parabolic trajectories for current error space phasor for controlling the switching frequency variation in the hysteresis controller based two-level inverter fed IM drives. A generalized algorithm is developed to determine unique set of parabolic trajectories for different speeds of operation for any given IM load. Proposed hysteresis controller provides the switching frequency spectrum of inverter output voltage, similar to that of the constant switching frequency VC-SVPWM based IM drive. The scheme is extensively simulated and experimentally verified on a 3.7 kW IM drive for steady state and transient performance.
Resumo:
This work describes the parallelization of High Resolution flow solver on unstructured meshes, HIFUN-3D, an unstructured data based finite volume solver for 3-D Euler equations. For mesh partitioning, we use METIS, a software based on multilevel graph partitioning. The unstructured graph used for partitioning is associated with weights both on its vertices and edges. The data residing on every processor is split into four layers. Such a novel procedure of handling data helps in maintaining the effectiveness of the serial code. The communication of data across the processors is achieved by explicit message passing using the standard blocking mode feature of Message Passing Interface (MPI). The parallel code is tested on PACE++128 available in CFD Center
Resumo:
The effect of temperature and stoichiometry on the polarization switching rate in lithium niobate is presented. An increased polarization switching rate in congruent and near-stoichiometric lithium niobate (CLN and SLN) and SLN doped with 1.6 mol% Zn (SLN:Zn(1.6)) is observed using a pulsed field switching technique near the transition temperature (TO. Compared to CLN, the observed switching rate and domain wall mobility for SLN and SLN:Zn(1.6) are higher. The extra charge flow was observed during switching at high temperatures,and is attributed to the creation of defect dipoles and increase in ionic conductivity. Forward domain motion is expected to be the mechanism involved in switching. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.
Resumo:
The Silver code has captured a lot of attention in the recent past,because of its nice structure and fast decodability. In their recent paper, Hollanti et al. show that the Silver code forms a subset of the natural order of a particular cyclic division algebra (CDA). In this paper, the algebraic structure of this subset is characterized. It is shown that the Silver code is not an ideal in the natural order but a right ideal generated by two elements in a particular order of this CDA. The exact minimum determinant of the normalized Silver code is computed using the ideal structure of the code. The construction of Silver code is then extended to CDAs over other number fields.
Resumo:
During active growth of Escherichia coli, majority of the transcriptional activity is carried out by the housekeeping sigma factor (Sigma 70), whose association with core RNAP is generally favoured because of its higher intracellular level and higher affinity to core RNAP. In order to facilitate transcription by alternative sigma factors during nutrient starvation, the bacterial cell uses multiple strategies by which the transcriptional ability of Sigma 70 is diminished in a reversible manner. The facilitators of shifting the balance in favour of alternative sigma factors happen to be as diverse as a small molecule (p)ppGpp (represents ppGpp or pppGpp), proteins (DksA, Rsd) and a species of RNA (6S RNA). Although 6S RNA and (p)ppGpp were known in literature for a long time, their role in transcriptional switching has been understood only in recent years. With themelucidation of function of DksA, a new dimension has been added to the phenomenon of stringent response. As the final outcome of actions of (p)ppGpp, DksA, 6S RNA and Rsd is similar, there is a need to analyse hese mechanisms in a collective manner. We review the recent trends in understanding the regulation of Sigma 70 by (p)ppGpp, DksA, Rsd and 6S RNA and present a case for evolving a unified model of RNAP redistribution during starvation by modulation of Sigma 70 activity in E. coli.
Resumo:
The phenomena of nonlinear I-V behavior and electrical switching find extensive applications in power control, information storage, oscillators, etc. The study of I-V characteristics and switching parameters is necessary for the proper application of switching materials and devices. In the present work, a simple low-cost electrical switching analyzer has been developed for the measurement of the electrical characteristics of switching materials and devices. The system developed consists of a microcontroller-based excitation source and a high-speed data acquisition system. The design details of the excitation source, its interface with the high-speed data acquisition system and personal computer, and the details of the application software developed for automated measurements are described. Typical I-V characteristics and switching curves obtained with the system developed are also presented to illustrate the capability of the instrument developed.
Resumo:
Bulk As-Te-Tl glasses belonging to the As30Te70-xTlx (4 <= x <= 22) and As40Te60-xTlx (5 <= x <= 20) composition tie lines are studied for their I-V characteristics. Unlike other As-Te-III glasses such as As-Te-Al and As-Te-In, which exhibit threshold behavior, the present samples show memory switching. The composition dependence of switching voltages (V-t) of As-Te-Tl glasses is also different from that of As-Te-Al and As-Te-In glasses, and it is found that V-t decreases with the addition of Tl. Both the type of switching exhibited by As-Te-Tl glasses and the composition dependence of V-t, seems to be intimately connected with the nature of bonding of Tl atoms and the resultant structural network. Furthermore, the temperature and thickness dependence of switching voltages of As-Te-Tl glasses suggest an electro thermal mechanism for switching in these samples.
Resumo:
Alternating Differential Scanning Calorimetric (ADSC) and electrical switching studies have been undertaken on Ge20Se80-xBix glasses (1 <= x <= 13), to understand the effect of topological thresholds on thermal properties and electrical switching behavior. It is found that the compositional dependence of glass transition temperature (Tg), crystallization temperature (T-c1) and thermal stability (AT) of Ge20Se80-xBix glasses show anomalies at a composition x= 5, the rigidity percolation/stiffness threshold of the system. Further, unusual variations are also observed in different thermal properties, such as T-g, T-c1, Delta T, Delta C-p and Delta H-NR, at the composition x= 10, which indicates the occurrence of chemical threshold in these glasses at this composition. Electrical switching studies indicate that Ge20Se8o_RBig glasses with 5 11 exhibit threshold switching behavior and those with x = 12 and 13 show memory switching. A sharp decrease has been noticed in the switching voltages with bismuth concentration, which is due to the more metallic nature of bismuth and the presence of Bi+ ions. Further, a saturation is seen in the decrease in V-T around x = 6, which is related to bismuth phase percolation at higher concentrations of Bi. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The effect of pressure on non-ohmic conduction and electrical switching in the charge transfer complex benzidine-DDQ has been studied up to a pressure of 7·66 GPa at a temperature of 300K. Pulsed I-V measurements reveal heating contribution to non-ohmicity and switching. At high electric fields (∼ 3 × 103 V/cm), the sample switches from high resistance OFF state of several kiloohms to low resistance ON state of several ohms. Temperature dependence of conductivity of ON state show semiconducting behaviour with very low activation energy.
Resumo:
The electrical switching behavior of amorphous Al23Te77 thin film devices, deposited by flash evaporation, has been studied in co-planar geometry. It is found that these samples exhibit memory type electrical switching. Scanning Electron Microscopic studies show the formation of a crystalline filament in the electrode region which is responsible for switching of the device from high resistance OFF state to low resistance ON state. It is also found that the switching behavior of thin film Al-Te samples is similar to that of bulk samples, with the threshold fields of bulk samples being higher. This has been understood on the basis of higher thermal conductance in bulk, which reduces the Joule heating and temperature rise in the electrode region. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Polarization switching processes in TAAP and DTAAP have been studied by the Merz method. The switching process in DTAAP is slower than in TAAP. The temperature dependence of switching time indicates that the crystal might contain groups of domain nuclei with different activation energies. X-ray irradiation causes an increase in the threshold field below which switching could not occur and decrease in the mobility of domain walls. Irradiation decreases the peak value of dielectric constant, Tc and increases the value of coercive field. Domain structure studies on TAAP crystals have shown that the crystals grow as both predominantly single domain and multi domains, depending on which the internal bias increases or remains unaffected upon irradiation.