35 resultados para Civic improvement
Resumo:
Simulations using Ansys Fluent 6.3.26 have been performed to look into the adsorption characteristics of a single silica gel particle exposed to saturated humid air streams at Re=108 & 216 and temperature of 300K. The adsorption of the particle has been modeled as a source term in the species and the energy equations using a Linear Driving Force (LDF) equation. The interdependence of the thermal and the water vapor concentration field has been analysed. This work is intended to aid in understanding the adsorption effects in silica gel beds and in their efficient design. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Resumo:
Lead-tin-telluride is a well-known thermoelectric material in the temperature range 350-750 K. Here, this alloy doped with manganese (Pb0.96-yMn0.04SnyTe) was prepared for different amounts of tin. X-ray diffraction showed a decrease of the lattice constant with increasing tin content, which indicated solid solution formation. Microstructural analysis showed a wide distribution of grain sizes from <1 mu m to 10 mm and the presence of a SnTe rich phase. All the transport properties were measured in the range of 300-720 K. The Seebeck coefficient showed that all the samples were p-type indicating holes as dominant carriers in the measurement range. The magnitude increased systematically on reduction of the Sn content due to possible decreasing hole concentration. Electrical conductivity showed the degenerate nature of the samples. Large values of the electrical conductivity could have possibly resulted from a large hole concentration due to a high Sn content and secondly, due to increased mobility by sp-d orbital interaction between the Pb1-ySnyTe sublattice and the Mn2+ ions. High thermal conductivity was observed due to higher electronic contribution, which decreased systematically with decreasing Sn content. The highest zT = 0.82 at 720 K was obtained for the alloy with the lowest Sn content (y = 0.56) due to the optimum doping level.
Resumo:
Enhancement of superconducting transition temperature (T-c) of parent superconductor, Fe1+xSe, of `Fe-11' family by Cr-substitution for excess Fe has been motivated us to investigate the effect of Cr-substitution in optimal superconductor or Fe1+xSe0.5Te0.5 at Fe site. Here, we report structural, magnetic, electrical transport, thermal transport and heat capacity properties or Cr-substitute compounds. x-ray diffraction measurement confirms the substitution of Cr-atoms in host lattice. Magnetic and electrical transport measurements are used to explore the superconducting properties where Cr-substituted compounds show improvement in superconducting diamagnetic fraction with same T-c as undoped one Heat capacity measurement confirms the bulk superconducting properties of compounds. Thermopower measurement characterizes the type of charge carriers in normal state. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
An attempt has been made to bring out the influence on strength and volume change behavior of fabric changes and new cementitious compound formation in a soil upon addition of various lime contents and with curing periods. The effects of changes in fabric of treatment with various lime contents (0, 2,4 and 6%) and with curing periods (0, 7, 14 and 28 days) have been evaluated by one-dimensional consolidation tests, in terms of void ratio changes and compressibility. The strength of soil treated with different lime contents with curing periods up to 28 days, and with the optimum lime content of 6% up to one year has been determined by unconfined compression tests. Comparison of effects of lime on the strength and volume change behavior of the soil brings out that the formation of flocculated fabric and cation exchange significantly reduces the compressibility of soil but marginally increases the strength. Cementation of soil particles and filling with cementitious compounds of the voids of flocculated fabric in the soil marginally reduces the compressibility but significantly increases the strength. Thus, the mechanism of volume change behavior of soil treated with lower lime content at short curing periods is distinctly different from that of the soil treated with optimum lime content at longer curing periods. This is consistent with the increase in the permeability caused by the addition from 2 to 4% lime and the decrease following the addition of 6% lime. Changes consistent with mechanical behavior have been determined by scanning electron microscope, X-ray diffraction and thermal analyses, energy dispersive X-ray spectrometer and pH value in microstructure, mineralogy, chemical composition and alkalinity, respectively. (C) 2015 Published by Elsevier B.V.
Resumo:
Clock synchronization in a wireless sensor network (WSN) is quite essential as it provides a consistent and a coherent time frame for all the nodes across the network. Typically, clock synchronization is achieved by message passing using a contention-based scheme for media access, like carrier sense multiple access (CSMA). The nodes try to synchronize with each other, by sending synchronization request messages. If many nodes try to send messages simultaneously, contention-based schemes cannot efficiently avoid collisions. In such a situation, there are chances of collisions, and hence, message losses, which, in turn, affects the convergence of the synchronization algorithms. However, the number of collisions can be reduced with a frame based approach like time division multiple access (TDMA) for message passing. In this paper, we propose a design to utilize TDMA-based media access and control (MAC) protocol for the performance improvement of clock synchronization protocols. The basic idea is to use TDMA-based transmissions when the degree of synchronization improves among the sensor nodes during the execution of the clock synchronization algorithm. The design significantly reduces the collisions among the synchronization protocol messages. We have simulated the proposed protocol in Castalia network simulator. The simulation results show that the proposed protocol significantly reduces the time required for synchronization and also improves the accuracy of the synchronization algorithm.