52 resultados para Cilia and ciliary motion


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chlorine has been substituted at the 2- and 4-positions in the pyridine and quinoline rings of the corresponding N-oxides and 35Cl n.q.r. spectra have been studied in the temperature range 77–300 K. The change in the n.q.r. frequencies in N-oxides as compared to their parent compounds are interpreted in terms of the conjugative effect and the inductive effect of the N+—O– group. The negative temperature coefficients of the resonance frequencies in chloropyridine-N-oxides have been analysed using the Bayer, Kushida and Brown equations. The calculated torsional frequencies, which are in the range 52–78 cm–1, are found to be only slightly temperature dependent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the Segal-Bargmann transform on a motion group R-n v K, where K is a compact subgroup of SO(n) A characterization of the Poisson integrals associated to the Laplacian on R-n x K is given We also establish a Paley-Wiener type theorem using complexified representations

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In β-AgI and β-Ag3SI the ionic conductivity has been measured at frequencies from 1kHz to 2.6 GHz and from 10 MHz to 10 THz, respectively. In both phases we observe a conductivity increase of some orders of magnitude, due to localized types of motion of the silver ions. In β-AgI the increase is found at about 1 MHz and reflects cooperative back-and-forth hopping processes between adjacent tetrahedral sites. In β-Ag3SI the phenomenon occurs at microwave frequencies. Here it is caused by a non-hopping, non-periodic localized Ag+-motion within shallow potentials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nonaxisymmetric unsteady motion produced by a buoyancy-induced cross-flow of an electrically conducting fluid over an infinite rotating disk in a vertical plane and in the presence of an applied magnetic field normal to the disk has been studied. Both constant wall and constant heat flux conditions have been considered. It has been found that if the angular velocity of the disk and the applied magnetic field squared vary inversely as a linear function of time (i.e. as (1??t*)?1, the governing Navier-Stokes equation and the energy equation admit a locally self-similar solution. The resulting set of ordinary differential equations has been solved using a shooting method with a generalized Newton's correction procedure for guessed boundary conditions. It is observed that in a certain region near the disk the buoyancy induced cross-flow dominates the primary von Karman flow. The shear stresses induced by the cross-flow are found to be more than these of the primary flow and they increase with magnetic parameter or the parameter ? characterizing the unsteadiness. The velocity profiles in the x- and y-directions for the primary flow at any two values of the unsteady parameter ? cross each other towards the edge of the boundary layer. The heat transfer increases with the Prandtl number but reduces with the magnetic parameter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For an articulated manipulator with joint rotation constraints, we show that the maximum workspace is not necessarily obtained for equal link lengths but is also determined by the range and mean positions of the joint motions. We present expressions for sectional area, workspace volume, overlap volume and work area in terms of link ratios, mean positions and ranges of joint motion. We present a numerical procedure to obtain the maximum rectangular area that can be embedded in the workspace of an articulated manipulator with joint motion constraints. We demonstrate the use of analytical expressions and the numerical plots in the kinematic design of an articulated manipulator with joint rotation constraints.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dynamics of poly(isobutyl methacrylate) in toluene solution has been examined by C-13 spin-lattice relaxation time and NOE measurements as a function of temperature. The experiments were performed at 50.3 and 100.6 MHz. The backbone carbon relaxation data have been analyzed using the Dejean-Laupretre-Monnerie (DLM) model, which describes the dynamical processes in the backbone in terms of conformational transitions and bond librations. The relaxation data of the side chain nuclei have been analyzed by assuming different motional models, namely, unrestricted rotational diffusion, three site jumps, and restricted rotational diffusion. The different models have been compared for their ability to reproduce the experimental spin-lattice relaxation times and also to predict the behavior of NOE as a function of temperature. Conformational energy calculations have been carried out on a model compound by using the semiempirical quantum chemical method, AM1, and the results confirm the validity of the motional models used to describe the side-chain motion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple but self-consistent microscopic theory for the time dependent solvation energy of both ions and dipoles is presented which includes, for the first time, the details of the self-motion of the probe on its own solvation dynamics. The theory leads to several interesting predictions. The most important of them is that, for dipolar solvation, both the rotational and the translational motions of the dipolar solute probe can significantly accelerate the rate of solvation. In addition, the rotational self-motion of the solute can also give rise to an additional mechanism of nonexponentiality in solvation time correlation functions in otherwise slow liquids. A comparison between the present theoretical predictions and the recent experimental studies of Maroncelli et al. on solvation dynamics of aniline in l-propanol seems to indicate that the said experiments have missed the initial solvent response up to about 45 ps. After mapping the experimental results on the redefined time scale, the theoretical results can explain the experimental results for solvation of aniline in 1-propanol very well. For ionic solvation, the translational motion is significant for light solutes only. For example, for Li+ in water, translational motion speeds up the solvation by about 20%. The present theory demonstrates that in dipolar solvation the partial quenching of the self-motion due to the presence of specific solute-solvent interactions (such as H-bonding) may lead to a much slower solvation than that when the self-motion is present. This point has been discussed. In addition, we present the theoretical results for solvation of aniline in propylene carbonate, Here, the solvation is predicted to be complete within 15-20 ps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When synchronous motion does not exist, it is not possible to draw the classical mode shapes. In this paper, a representative shape of motion during free vibration of a non-classically damped system is sought. It is noted that this shape provides an optimal representation of free motion. Interpretations of the optimality thus introduced are presented. Their connection with non-proportionality of damping and of gyroscopy is brought out. In the spirit of the optimality presented in this paper, two indices of non-proportionality are defined. Properties of these indices are discussed. Comparison with other indices of non-proportionality available in the literature is presented. Illustrative examples are given. (C) 1999 Academic Press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two-axis micromanipulators, whose tip orientation and position can be controlled in real time in the scanning plane, enable versatile probing systems for 2.5-D nanometrology. The key to achieve high-precision probing systems is to accurately control the interaction point of the manipulator tip when its orientation is changed. This paper presents the development of a probing system wherein the deviation in the end point due to large orientation changes is controlled to within 10 nm. To achieve this, a novel micromanipulator design is first proposed, wherein the end point of the tip is located on the axis of rotation. Next, the residual tip motion caused by fabrication error and actuation crosstalk is modeled and a systematic method to compensate it is presented. The manipulator is fabricated and the performance of the developed scheme to control tip position during orientation change is experimentally validated. Subsequently, the two-axis probing system is demonstrated to scan the full top surface of a micropipette down to a diameter of 300 nm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A numerical micro-scale model is developed to study the behavior of dendrite growth in presence of melt convection. In this method, an explicit, coupled enthalpy model is used to simulate the growth of an equiaxed dendrite, while a Volume of Fluid (VOF) method is used to track the movement of the dendrite in the convecting melt in a two-dimensional Eulerian framework. Numerical results demonstrate the effectiveness of the enthalpy model in simulating the dendritic growth involving complex shape, and the accuracy of VOF method in conserving mass and preserving the complex dendritic shape during motion. Simulations are performed in presence of uniform melt flow for both fixed and moving dendrites, and the difference in dendrite morphology is shown.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A coupled methodology for simulating the simultaneous growth and motion of equiaxed dendrites in solidifying melts is presented. The model uses the volume-averaging principles and combines the features of the enthalpy method for modeling growth, immersed boundary method for handling the rigid solid-liquid interfaces, and the volume of fluid method for tracking the advection of the dendrite. The algorithm also performs explicit-implicit coupling between the techniques used. A two-dimensional framework with incompressible and Newtonian fluid is considered. Validation with available literature is performed and dendrite growth in the presence of rotational and buoyancy driven flow fields is studied. It is seen that the flow fields significantly alter the position and morphology of the dendrites. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motion analysis is very essential in sport activities to enhance the performance of an athlete and to ensure the correctness of regimes. Expensive methods of motion analysis involving the use of sophisticated technology has led to limited application of motion analysis in sports. Towards this, in this paper we have integrated a low-cost method for motion analysis using three axis accelerometer, three axis magnetometer and microcontroller which are very accurate and easy to use. Seventeen male subjects performed two experiments, standing short jumps and long jumps over a wide range of take-off angles. During take-off and landing the acceleration and angles at different joints of the body are recorded using accelerometers and magnetometers, and the data is captured using Lab VIEW software. Optimum take-off angle in these jumps are calculated using the recorded data, to identify the optimum projection angle that maximizes the distance achieved in a jump. The results obtained for optimum take off angle in short jump and long jump is in agreement with those obtained using other methodologies and theoretical calculations assuming jump to be a projectile motion. The impact force (acceleration) is also analysed and is found to progressively decrease from foot to neck.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present investigation, efforts were made to study the different frictional responses of materials with varying crystal structure and hardness during sliding against a relatively harder material of different surface textures and roughness. In the experiments, pins were made of pure metals and alloys with significantly different hardness values. Pure metals were selected based on different class of crystal structures, such as face centered cubic (FCC), body centered cubic (BCC), body centered tetragonal (BCT) and hexagonal close packed (HCP) structures. The surface textures with varying roughness were generated on the counterpart plate which was made of H-11 die steel. The experiments were conducted under dry and lubricated conditions using an inclined pin-on-plate sliding tester for various normal loads at ambient environment. In the experiments, it was found that the coefficient of friction is controlled by the surface texture of the harder mating surfaces. Further, two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. More specifically, stead-state frictional response was observed for the FCC metals, alloys and materials with higher hardness. Stick-slip frictional response was observed for the metals which have limited number of slip systems such as BCT and HCP. In addition, the stick-slip frictional response was dependent on the normal load, lubrication, hardness and surface texture of the counterpart material. However, for a given kind of surface texture, the roughness of the surface affects neither the average coefficient of friction nor the amplitude of stick-slip oscillation significantly.