83 resultados para Chirped pulse amplifications
Resumo:
Degenerate pump-probe reflectivity experiments have been performed on a single crystal of bismuth telluride (Bi2Te3) as a function of sample temperature (3 K to 296 K) and pump intensity using similar to 50 femtosecond laser pulses with central photon energy of 1.57 eV. The time-resolved reflectivity data show two coherently generated totally symmetric A(1g) modes at 1.85 THz and 3.6 THz at 296 K which blue-shift to 1.9 THz and 4.02 THz, respectively, at 3 K. At high photoexcited carrier density of similar to 1.7 x 10(21) cm(-3), the phonon mode at 4.02 THz is two orders of magnitude higher positively chirped (i.e the phonon time period decreases with increasing delay time between the pump and the probe pulses) than the lower-frequency mode at 1.9 THz. The chirp parameter, beta is shown to be inversely varying with temperature. The time evolution of these modes is studied using continuous-wavelet transform of the time-resolved reflectivity data. Copyright (C) EPLA, 2010
Resumo:
Programmable pulse generator (PPG) circuits using programmable interval timer chips are normally based on a PC or a microprocessor. We describe here a simple low cost programmable two-pulse generator using Intel 8253s in a stand-alone mode, eliminating the need for a PC or a microprocessor, though our design also can be operated via a PC or a microprocessor.
Resumo:
Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation. While a sequence of equidistant control pulses the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence the Uhrig dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system qubits are C-13 nuclear spins and the environment consists of a H-1 nuclear spin bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant DD sequence in the presence of this kind of environmental noise.
Resumo:
Trace of iron(III) are determined by differential pulse polarography in a medium of sodium hydroxide and sodium bromate using the catalytic current. Various cations do not interfere. The relative standard deviation is 2%.
Resumo:
A differential pulse polarographic (DPP) method based on the adsorption catalytic current in a medium containing chlorate and 8-hydroxyquinoline (oxine) is suggested for the determination of molybdenum(VI). Experimental conditions such as pH and the composition of supporting electrolyte have been optimized to get a linear calibration graph at trace levels of Mo(VI). The sensitivity for molybdenum can be considerably enhanced by this method. The influence of possible interferences on the catalytic current has been investigated. The sensitivity of the method is compared with those obtained for other DPP methods for molybdenum. A detection limit of 1.0 x 10(-8) mol/L has been found.
Resumo:
Thermal decomposition of 1,2-dichloroethane (1,2-DCE) has been studied in the temperature range of 10501175 K behind reflected shock waves in a single pulse shock tube. The unimolecular elimination of HCl is found to be the major channel through which 1,2-DCE decomposes under these conditions. The rate constant for the unimolecular elimination of HCl from 1,2-dichloroethane is found to be 10(13.98+/-0.80) exp(-57.8+/-2.0/RT) s(-1), where the activation energy is given in kcal mol(-1) and is very close to that value for CH3CH2Cl (EC). Ab initio (HF and MP2) and DFT calculations have been carried out to find the activation barrier and the structure of the transition state for this reaction channel from both EC and 1,2-DCE. The preexponential factors calculated at various levels of theory (BF/6-311++G**, MP2/6-311++G**, and B3LYP/6-311++G**) are (approximate to10(15) s(-1)) significantly larger than the experimental results. If the torsional mode in the ground state is treated as free internal rotation the preexponential factors reduce significantly, giving excellent agreement with experimental values. The DFT results are in excellent (fortuitous?) agreement with the experimental value for activation energy for 1,2-DCE while the MP2 and HF results seem to overestimate the barrier. However, DFT results for EC is 4.5 kcal mol(-1) less than the previously reported experimental values. At all levels, theory predicts an increase in HCI elimination barrier on beta-Cl substitution on EC.
Effect of regenerator material compositions on the performances of a two-stage pulse tube cryocooler