82 resultados para Change transfer mechanism
Resumo:
4..T~iouridine, a thionucleoside present in the transfer RNA of the free living, nitrogen-fixing ?actenu~ Azotobacter »inelandii shows a culture condition dependent change. When thebacterium IS grown Intheabsen~e ofanyfixed nit~ogen thetRNA contains 4-thiouridine to theextent of 45% of the total sulphur Incorporated. This gets reduced to 5%when the bacterium is grown in the presen~e of.e~ces~ ofamm~nium salt.Instead, a new thionucleoside which appears to be a derivative of 4-thloundlne IS found In the tRNA to the extent of 28%of the total sulphur incorporated.
Resumo:
A change-over from SN2(P) to SN1(P) mechanism is established for the chlorine replacement reactions of halogenocyclophosphazenes; this mechanistic change-over helps in rationalising the diverse findings reported for this class of reactions.
Resumo:
The free radical polymerization of acrylonitrile (AN) initiated by Cu(II) 4-anilino 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(II) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCl4), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were 2 at two different temperatures and in different solvents. The square-root dependence of Rp on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formation was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.
Resumo:
A rate equation is developed for the liquid-phase oxidation of propionaldehyde with oxygen in the presence of manganese propionate catalyst in a sparged reactor. The equation takes into account diffusional limitations based on Brian's solution for mass transfer accompanied by a pseudo m-. nth-order reaction. Sauter-mean bubble diameter, gas holdup, interfacial area, and bubble rise velocity are measured, and rates of mass transfer within the gas phase and across the gas-liquid interface are computed. Statistically designed experiments show the adequacy of the equation. The oxidation reaction is zero order with respect to oxygen concentration, 3/2 order with respect to aldehyde concentration, and order with respect to catalyst concentration. The activation energy is 12.1 kcal/g mole.
Resumo:
Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.
Resumo:
Soils in and and semi-arid zones undergoes volume changes due to wetting. Depending upon the type of clay minerals present, degree of saturation, externally applied load and bonding, the fine grained soils either swells or compresses. One of the parameter that affects the volume change behaviour is the primary clay mineral present in their clay size fraction. A simple method of identifying the same has been presented. It has been brought out that in an expansive unsaturated undisturbed soil, the diffuse double layer repulsion, the stress state and the bonding play significant role in their volume change behaviour. In non-expansive fine grained unsaturated undisturbed soils, the shearing resistance at particle level (including the matrix suction and bonding) and fabric play a significant role in influencing the volume change behaviour. While both the mechanism co-exist, one of them play a dominant role depending upon the primary clay mineral is swelling or non swelling.
Resumo:
Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.
Resumo:
The binding of winged bean basic agglutinin (WBA I) to 4-methylumbelliferyl (MeUmb) galactosides was examined by extrinsic fluorescence titration and stopped-flow spectrofluorimetry. Upon binding to WBA I, MeUmb alpha-galactosides show quenching in fluorescence intensity, decrease in UV absorbance with a concomitant blue shift, and decrease in fluorescence excited-state lifetimes. However, their beta-analogues show enhancement in fluorescence intensity, increase in UV absorbance with a red shift, and an increase in fluorescence excited-state lifetimes. This implies that the umbelliferyl groups of alpha- and beta-galactosides experience non-polar and polar microenvironments, respectively, upon binding to WBA I. Replacement of the anomeric hydroxyl group of galactose by 4-methylumbelliferyl moiety increases the affinity of resulting saccharides. Substitution of C-2 hydroxyl of galactose by an acetamido group leads to increased affinity due to a favorable entropy change. This suggests that acetamido group of MeUmb-alpha/beta-GalNAc binds to a relatively non-polar subsite of WBA I. Most interestingly, this substitution also reduces the association rate constants dramatically. Inspection of the activation parameters reveals that the enthalpy of activation is the limiting factor for the differences in the forward rate constants for these saccharides and the entropic contribution to the activation energy is small
Resumo:
Binding of 13C-labeled N-acetylgalactosamine (13C-GalNAc) and N-trifluoroacetylgalactosamine (19F-GalNAc) to Artocarpus integrifolia agglutinin has been studied using 13C and 19F nuclear magnetic resonance spectroscopy, respectively. Binding of these saccharides resulted in broadening of the resonances, and no change in chemical shift was observed, suggesting that the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc experience a magnetically equivalent environment in the lectin combining site. The alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc were found to be in slow exchange between free and protein bound states. Binding of 13C-GalNAc was studied as a function of temperature. From the temperature dependence of the line broadening, the thermodynamic and kinetic parameters were evaluated. The association rate constants obtained for the alpha-anomers of 13C-GalNAc and 19F-GalNAc (k+1 = 1.01 x 10(5) M-1.s-1 and 0.698 x 10(5) M-1.s-1, respectively) are in close agreement with those obtained for the corresponding beta-anomers (k+1 = 0.95 x 10(5) M-1.s-1 and 0.65 x 10(5) M-1.s-1, respectively), suggesting that the two anomers bind to the lectin by a similar mechanism. In addition these values are several orders of magnitude slower than those obtained for diffusion controlled processes. The dissociation rate constants obtained are 49.9, 56.9, 42, and 43 s-1, respectively, for the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc. A two-step mechanism has been proposed for the interaction of 13C-GalNAc and 19F-GalNAc with A. integrifolia lectin in view of the slow association rates and high activation entropies. The thermodynamic parameters obtained for the association and dissociation reactions suggest that the binding process is entropically favored and that there is a small enthalpic contribution.
Resumo:
The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.
Resumo:
The effect of vibration on heat transfer from a horizontal copper cylinder, 0.344 in. in diameter and 6 in. long, was investigated. The cylinder was placed normal to an air stream and was sinusoidally vibrated in a direction perpendicular to the direction of the air stream. The flow velocity varied from 19 ft/s to 92 ft/s; the double amplitude of vibration from 0.75 cm to 3.2 cm, and the frequency of vibration from 200 to 2800 cycles/min. A transient technique was used to determine the heat transfer coefficients. The experimental data in the absence of vibration is expressed by NNu = 0.226 NRe0.6 in the range 2500 < NRe < 15 000. By imposing vibrational velocities as high as 20 per cent of the flow velocity, no appreciable change in the heat transfer coefficient was observed. An analysis using the resultant of the vibration and the flow velocity explains the observed phenomenon.
Resumo:
Recent studies have shown that changes in global mean precipitation are larger for solar forcing than for CO2 forcing of similar magnitude.In this paper, we use an atmospheric general circulation model to show that the differences originate from differing fast responses of the climate system. We estimate the adjusted radiative forcing and fast response using Hansen's ``fixed-SST forcing'' method.Total climate system response is calculated using mixed layer simulations using the same model. Our analysis shows that the fast response is almost 40% of the total response for few key variables like precipitation and evaporation. We further demonstrate that the hydrologic sensitivity, defined as the change in global mean precipitation per unit warming, is the same for the two forcings when the fast responses are excluded from the definition of hydrologic sensitivity, suggesting that the slow response (feedback) of the hydrological cycle is independent of the forcing mechanism. Based on our results, we recommend that the fast and slow response be compared separately in multi-model intercomparisons to discover and understand robust responses in hydrologic cycle. The significance of this study to geoengineering is discussed.
Resumo:
The temperature (T) and electric field-to-gas pressure (E/P) dependences of the rate coefficientk for the reaction SF 6 � +SOF4rarrSOF 5 � +SF5 have been measured. ForT<270>k approaches a constant of 2.1×10�9 cm3/s, and for 433>T>270 K,k decreases withT according tok (cm3/s)=0.124 exp [�3.3 lnT(K)]. ForE/Pk has a constant value of about 2.5×10�10 cm3/s, and for 130 V/cm·torr>E/P>60 V/cm·torr, the rate is approximately given byk (cm3/s)sim7.0×10�10 exp (�0.022E/P). The measured rate coefficient is used to estimate the influence of this reaction on SOF4 production from negative, point-plane, glow-type corona discharges in gas mixtures containing SF6 and at least trace amounts of O2 and H2O. A chemical kinetics model of the ion-drift region in the discharge gap is used to fit experimental data on SOF4 yields assuming that the SF 6 � +SOF4 reaction is the predominant SOF4 loss mechanism. It is found that the contribution of this reaction to SOF4 destruction falls considerably below the estimated maximum effect assuming that SF 6 � is the predominant charge carrier which reacts only with SOF4. The results of this analysis suggest that SF 6 � is efficiently deactivated by other reactions, and the influence of SF 6 � +SOF4 on SOF4 production is not necessarily more significant than that of other slower secondary processes such as gas-phase hydrolysis
Resumo:
Characterization of melting process in a Phase Change Material (PCM)-based heat sink with plate fin type thermal conductivity enhancers (TCEs) is numerically studied in this paper. Detailed parametric investigations are performed to find the effect of aspect ratio of enclosure and the applied heat flux on the thermal performance of the heat sinks. Various non-dimensional numbers, such as Nusselt number (Nu), Rayleigh number (Ra), Stefan number (Ste) and Fourier number (Fo) based on a characteristic length scale, are identified as important parameters. The half fin thickness and the fin height are varied to obtain a wide range of aspect ratios of an enclosure. It is found that a single correlation of Nu with Ra is not applicable for all aspect ratios of enclosure with melt convection taken into account. To find appropriate length scales, enclosures with different aspect ratios are divided into three categories, viz. (a) shallow enclosure, (b) rectangular enclosure and (c) tall enclosure. Accordingly, an appropriate characteristic length scale is identified for each type of enclosure and correlation of Nu with Ra based on that characteristic length scale is developed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Qualitative potential energy surfaces for hydrogen abstraction from alkanes containing primary, secondary and tertiary C-H bonds by a photo-excited ketone have been reported, The results suggest that the activation barriers for these processes decrease in the order primary > secondary > tertiary in agreement with the observed trend in the rate constants. The analysis of the electronic structure of the transition-state reveal that electron-transfer from hydrocarbon to ketone and formation of a new bond are almost synchronous in the hydrogen transfer process. The tunneling of hydrogen is not important in the normal temperature region even though the barriers are small.