94 resultados para Catalyst For Methanol Synthesis
Resumo:
The transesterification of methyl salicylate with phenol has been studied in vapour phase over solid acid catalysts such as ZrO2, MoO3 and SO42- or Mo(VI) ions modified zirconia. The catalytic materials were prepared and characterized for their total surface acidity, BET surface area and powder XRD patterns. The effect of mole-ratio of the reactants, catalyst bed temperature, catalyst weight, flow-rate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol has been investigated. A good yield (up to 70%) of salol with 90% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 degrees C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of SO42- or Mo(VI) ions. The effect of poisoning of acid sites of SO42- or Mo(VI) ions modified zirconia on total surface acidity, powder XRD phases and catalytic activity was also studied. Possible reaction mechanisms for the formation of salol and diphenyl ether over acid sites are proposed.
Resumo:
Rare earth exchanged H–Y zeolites were prepared by simple ion exchange methods at 353 K and have been characterized using different physicochemical techniques. A strong peak around 58 ppm in the 27Al{1H} MAS NMR spectra of these zeolites suggests a tetrahedral coordination for the framework aluminium. Small peak at or near 0 ppm is due to hexa-coordinated extra-framework aluminium and a shoulder peak near 30 ppm is a penta-coordinated aluminium species; [Al(OH)4]−. The vapor-phase benzene alkylation with 1-decene and 1-dodecene was investigated with these catalytic systems. Under the reaction conditions of 448 K, benzene/olefin molar ratio of 20 and time on stream 3 h, the most efficient catalyst was CeH–Y which showed more than 70% of olefin conversion with 48.5% 2-phenyldecane and 46.8%, 2-phenyldodecane selectivities with 1-decene and 1-dodecene respectively.
Resumo:
Chemically modified microporous materials can be prepared as robust catalysts suitable for application in vapor phase processes such as Friedel-Crafts alkylation. In the present paper we have investigated the use of rare earth metal (Ce3+, La3+, RE3+, and Sm3+) exchanged Na-Y zeolites as catalysts for the alkylation of benzene with long chain linear 1-olefin; 1-dodecene. Thermodesorption studies of 2,6-dimethylpyridine adsorbed catalysts (in the temperature range 573 to 873 K) show that the rare earth zeolites are highly Bronsted acidic in nature. A perfect correlation between catalyst selectivity towards the desired product (2-phenyldodecane) and Bronsted acid sites amount has been observed. (c) 2006 Springer Science + Business Media, Inc.
Resumo:
The reaction of cadmium sulfate in the presence of polyazaheterocyclic organic molecules gave rise to a variety of new cadmium sulfate phases in water containing solvothermal reaction. The compounds have two- (I) and three-dimensionally (II-VI) extended structures. All the compounds have structures built up by the connectivity involving the cadmium octahedra and the sulfate tetrahedra in which the heterocyclic organic molecules act as the ligand. The linkages between the Cd2+ and (SO4)2- ions form one- (II), two- (I, III, and IV), and three- (V and VI) dimensionally extended cadmium sulfate phases. The connectivity between Cd2+ ion and the heterocyclic ligand also gives rise to one- and two-dimensional structures. The inter-connectivity between the two units gives rise to the observed structures. The presence of Cd-O-Cd chains and Cd-O-Cd layers in some of the structures is noteworthy. The adsorption/desorption studies suggest that the cadmium sulfate phases adsorb/desorb anionic dyes selectively in the presence of water/ethanol, respectively. The photocatalytic degradation studies on cationic dyes under UV-irradiation indicate modest activity. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicate good catalytic behavior. The various properties exhibited by the cadmium sulfate phases suggest that these compounds are versatile. All the compounds were characterized by powder X-ray diffraction, thermogravimetric analysis, infrared (IR) and UV-visible studies.
Resumo:
We demonstrate the activity of Ce0.78Sn0.2Pt0.02O2-delta, a new catalyst, towards water-gas shift (WGS) reaction. Over 99.5% CO conversion to H-2 is observed at 300 +/- 25 degrees C. Based on different characterization techniques we found that the present catalyst is resistant to deactivation due to carbonate formation and sintering of Pt on the surface when subjected to longer duration of reaction conditions. The catalyst does not require any pre-treatment or activation between start-up/shut-down reaction operations. Formation of side products such as methane, methanol, formaldehyde, coke etc. was not observed under the WGS reaction conditions indicating the high selectivity of the catalyst for H-2. Temperature programmed reduction of the catalyst in hydrogen (H-2-TPR) shows reversible reduction of Ce4+ to Ce3+, Sn4+ to Sn2+ and Pt4+ to Pt-0 oxidation state with oxygen storage capacity (OSC) of 3500 mu mol g(-1) at 80 degrees C. Such high value of OSC indicates the presence of highly activated lattice oxygen. CO oxidation in presence of stoichiometric O-2 shows 100% conversion to CO2 at room temperature. The catalyst also exhibits 100% selectivity for CO2 at room temperature towards preferential oxidation (PROX) of residual CO in presence of excess hydrogen in the feed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Polyamide-phosphate esters were synthesized by interfacial polycondensation of aryl phosphorodichloridates with the diols of phenoxaphosphine and phosphine oxide in the presence of a phase-transfer catalyst. The polymers were characterized by infra-red and 1H, 13C and 31P nuclear magnetic resonance (n.m.r.) spectroscopy. The molecular weights were determined by end-group analysis using 31P n.m.r. spectral data. The phenoxaphosphine-containing polymers showed superior thermostability and flame retardancy over the phosphine-oxide-containing polymers.
Resumo:
Polyphosphate esters containing ferrocene structures were synthesized from 1,1′-bis (p-hydroxyphenylamido) ferrocene and 1,1′-bis (p-hydroxyphenoxycarbonyl) ferrocene with aryl phosphorodichloridates by interfacial polycondensation using a phase transfer catalyst. The polymers were characterized by infrared, 1H-, 13C-, and 31-NMR spectroscopy. The molecular weights were determined by end group analysis using 31P-NMR spectral data. The thermal stability and fire retardancy were respectively determined by thermogravimetry and limiting oxygen index (LOI) measurements. The polyamide-phosphate esters showed better thermal stability and higher LOI values than the polyester-phosphate esters.
Resumo:
Reaction of formamide with Ni(NO3)(2)center dot 6H(2)O under hydrothermal condition in a mixture of MeOH/H2O forms a two-dimensional formate bridged sheet Ni(HCOO)(2)(MeOH)(2) (1). X-ray structure analysis reveals the conversion of formamide to formate which acts as a bridging ligand in complex 1 where the axial sites of Ni(II) are occupied by methanol used as a solvent. An analogous reaction in presence of 4,4'-bipyridyl (4,4'-bipy) yielded a three-dimensional structure Ni(HCOO)(2)(4,4'-bpy) (2). DC magnetic measurements as a function of temperature and field established the presence of spontaneous magnetization with T-c (Curie temperature) = 17 and 20.8 K in 1 and 2, respectively, which can be attributed due to spin-canting. DFT calculations were performed to corroborate the magnetic results of 1 and 2. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the present study, titanium nitride which shows exceptional stability, extreme corrosion resistance, good electronic conductivity and adhesion behaviour is used to support platinum particles and then used for methanol oxidation in an alkaline medium. The catalyst shows very good CO tolerance for the electrochemical oxidation of methanol. In situ infrared spectroelectrochemical data show the remarkable ability of TiN to decompose water at low over potentials leading to -OH type functional groups on its surface which in turn help in alleviating the carbon monoxide poisoning associated with methanol oxidation. TiN supported catalysts are found to be very good in terms of long term stability, exchange current density and stable currents at low over voltages. Supporting evidence from X-ray photoelectron spectroscopic data and cyclic voltammetry clearly demonstrates the usefulness of TiN supported Pt catalysts for efficient methanol oxidation in alkaline media.
Resumo:
Electrooxidation of methanol in sulphuric acid on carbon-supported electrodes containing Pt-Sn bimetal catalysts prepared by an in-situ route is reported, The catalysts have been characterized employing chemical analyses, XRD, and XANES data in conjunction with electrochemistry. This study suggests that the Sn content in Pt-Sn bimetals produces: (i) a charge transfer from Sn to Pt and (ii) an increase in the coverage of adsorbed methanolic residues with the Sn content. From the electrode-kinetics data, it is inferred that while the electrodes of (3:3) Pt-Sn/C catalyst involve a 2-electron rate-limiting step akin to Pt/C electrodes, it is shifted to only 1-electron on (3:2) Pt-Sn/C, (3:3) Pt-Sn/C, and (3:4) Pt-Sn/C electrodes.
Resumo:
In order to study the efficiencies of catalytic moieties within and across dendrimer generations, partially and fully functionalized dendrimers were synthesized. Poly(alkyl aryl ether) dendrimers from zero to three generations, presenting 3 to 24 peripheral functionalities, were utilized to prepare as many as 12 catalysts. The dendrimer peripheries were partially and fully functionalized with triphenylphosphine in the first instance. A rhodium(I) metal complexation was performed subsequently to afford multivalent dendritic catalysts, both within and across generations. Upon synthesis, the dendritic catalysts were tested in the hydrogenation of styrene, in a substrate-to-catalyst ratio of 1:0.001. Turn-over-numbers were evaluated for each catalyst, from which significant increases in the catalytic activities were identified for multivalent catalysts than monovalent catalysts, both within and across generations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Design and synthesis of three novel 2 + 2] self-assembled molecular rectangles 1-3 via coordination driven self-assembly of predesigned Pd(II) ligands is reported. 1,8-Diethynylanthracene was assembled with trans-Pd(PEt3)(2)Cl-2 in the presence of CuCl catalyst to yield a neutral rectangle 1 via Pd-C bond formation. Complex 1 represents the first example of a neutral molecular rectangle obtained via C-Pd coordination driven self-assembly. A new Pd-2(II) organometallic building block with 180 degrees bite-angle 1,4-bistrans-(ethynyl)Pd(PEt3)(2)(NO3)] benzene (M-2) containing ethynyl functionality was synthesized in reasonable yield by employing Sonagashira coupling reaction. Self-assembly of M-2 with two organic clip-type donors (L-2-L-3) afforded 2 + 2] self-assembled molecular rectangles 2 and 3, respectively L-2 = 1,8-bis(4-pyridylethynyl) anthracene; L-3 = 1,3-bis(3-pyridyl) isophthalamide]. The macrocycles 1-3 were fully characterized by multinuclear NMR and ESI-MS spectroscopic techniques, and in case of 1 the structure was unambiguously determined by single crystal X-ray diffraction analysis. Incorporation of Pd-ethynyl bonds helped to make the assemblies p-electron rich and fluorescent in nature. Complexes 1-2 showed quenching of fluorescence intensity in solution in presence of nitroaromatics, which are the chemical signatures of many commercially available explosives.
Resumo:
A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.
Resumo:
Electro-oxidation of methanol was studied on carbon-supported Pt---Sn/C electrodes in silcotungstic acid (SiWA) at various concentrations. The porous-carbon electrodes employing Pt---Sn/C catalyst have been characterized using chemical analyses, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) in conjunction with electrochemistry. The presence of Pt---Sn and Pt3Sn alloys along with Pt and SnO2 phases in the catalyst were identified by XRD. XPS analysis showed a lower amount of PtO species in the Pt---Sn/C catalyst with respect to the corresponding Pt/C sample. From the steady-state galvanostatic polarization data on Pt---Sn/C electrodes in SiWA, it is inferred that a one-electron process is the rate determining step. The performance of the electrodes in 0.084 M SiWA was better than in 2.5 M H2SO4 under similar conditions up to load currents of about 100 mA cm−2 indicating the promoting behaviour of the electrolyte. At currents larger than 100 mA cm−2, the performance of the electrodes in 0.084 SiWA was poorer than that in 2.5 M H2SO4 mainly due to the dominance of mass polarization in the former owing to the large size of keggin units associated with the structure of SiWA. This aspect was supported by cyclic voltammetry and ac impedance studies on Pt---Sn/C electrodes. Simulation of the electrochemical impedance response for the oxidation of methanol in SiWA was carried out using the equivalent electrical circuit model.
Resumo:
A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.