259 resultados para Cantilever oscillations
Resumo:
The oscillations of a drop moving in another fluid medium have been studied at low values of Reynolds number and Weber number by taking into consideration the shape of the drop and the viscosities of the two phases in addition to the interfacial tension. The deformation of the drop modifies the Lamb's expression for frequency by including a correction term while the viscous effects split the frequency into a pair of frequencies—one lower and the other higher than Lamb's. The lower frequency mode has ample experimental support while the higher frequency mode has also been observed. The two modes almost merge with Lamb's frequency for the asymptotic cases of a drop in free space or a bubble in a dense viscous fluid but the splitting becomes large when the two fluids have similar properties. Instead of oscillations, aperiodic damping modes are found to occur in drops with sizes smaller than a critical size ($\sim\hat{\rho}\hat{\nu}^2/T $). With the help of these calculations, many of the available experimental results are analyzed and discussed.
Resumo:
Ionic polymer-metal composites (IPMC), piezoelectric polymer composites and nematic elastomer composites are materials, which exhibit characteristics of both sensors and actuators. Large deformation and curvature are observed in these systems when electric potential is applied. Effects of geometric non-linearity due to the chargeinduced motion in these materials are poorly understood. In this paper, a coupled model for understanding the behavior of an ionic polymer beam undergoing large deformation and large curvature is presented. Maxwell's equations and charge transport equations are considered which couple the distribution of the ion concentration and the pressure gradient along length of a cantilever beam with interdigital electrodes. A nonlinear constitutive model is derived accounting for the visco-elasto-plastic behavior of these polymers and based on the hypothesis that the presence of electrical charge stretches/contracts bonds, which give rise to electrical field dependent softening/hardening. Polymer chain orientation in statistical sense plays a role on such softening or hardening. Elementary beam kinematics with large curvature is considered. A model for understanding the deformation due to electrostatic repulsion between asymmetrical charge distributions across the cross-sections is presented. Experimental evidence that Silver(Ag) nanoparticle coated IPMCs can be used for energy harvesting is reported. An IPMC strip is vibrated in different environments and the electric power against a resistive load is measured. The electrical power generated was observed to vary with the environment with maximum power being generated when the strip is in wet state. IPMC based energy harvesting systems have potential applications in tidal wave energy harvesting, residual environmental energy harvesting to power MEMS and NEMS devices.
Resumo:
The paper presents an analysis of ferro-oscillations in capacitor voltage transformers and series-compensated e.h.v. lines. The dual-input describing function is adopted to show the regions of existence and the influence of system parameters on such oscillations. A complete analytical method suitable for digital computation has been developed for determining the amplitudes of these oscillations.
Resumo:
Intraseasonal variations (ISV) of sea surface temperature (SST) in the Bay of Bengal (BoB) is highest in its northwestern part. An Indian Ocean model forced by QuikSCAT winds and climatological river discharge (QR run) reproduces ISV of SST, albeit with weaker magnitude. Air-sea fluxes, in the presence of a shallow mixed layer, efficiently effect intraseasonal SST fluctuations. Warming during intraseasonal events is smaller (<1°C) for June - July period and larger (1.5° to 2°C) during September, the latter due to a thinner mixed layer. To examine the effect of salinity on ISV, the model was run by artificially increasing the salinity (NORR run) and by decreasing it (MAHA10 run). In NORR, both rainfall and river discharge were switched off and in MAHA10 the discharge by river Mahanadi was increased tenfold. The spatial pattern of ISV as well as its periodicity was similar in QR, NORR and MAHA10. The ISV was stronger in NORR and weaker in MAHA10, compared to QR. In NORR, both intraseasonal warming and cooling were higher than in QR, the former due to reduced air-sea heat loss as the mean SST was lower, and the latter due to enhanced subsurface processes resulting from weaker stratification. In MAHA10, both warming and cooling were lower than in QR, the former due to higher air-sea heat loss owing to higher mean SST, and the latter due to weak subsurface processes resulting from stronger stratification. These model experiments suggest that salinity effects are crucial in determining amplitudes of intraseasonal SST variations in the BoB.
Resumo:
This paper describes an application of a FACTS supplementary controller for damping of inter area oscillations in power systems. A fuzzy logic controller is designed to regulate a thyristor controlled series capacitor (TCSC) in a multimachine environment to produce additional damping in the system. Simultaneous application of the excitation controller and proposed controller is also investigated. Simulation studies have been done with different types of disturbances and the results are shown to be consistent with the expected performance of the supplementary controller.
Resumo:
High voltage power supplies for radar applications are investigated, which are subjected to pulsed load (125 kHz and 10% duty cycle) with stringent specifications (<0.01% regulation, efficiency>85%, droop<0.5 V/micro-sec.). As good regulation and stable operation requires the converter to be switched at much higher frequency than the pulse load frequency, transformer poses serious problems of insulation failure and higher losses. Few converter topologies are proposed to tackle these problems. A study is made regarding the beat frequency oscillations that may exist with pulsed loading. It is illustrated with respect to the proposed converter topologies. Methods are proposed to eliminate or minimize these oscillations.
Resumo:
We study the nature of quiet-Sun oscillations using multi-wavelength observations from TRACE, Hinode, and SOHO. The aim is to investigate the existence of propagating waves in the solar chromosphere and the transition region by analyzing the statistical distribution of power in different locations, e.g. in bright magnetic (network), bright non-magnetic and dark non-magnetic (inter-network) regions, separately. We use Fourier power and phase-difference techniques combined with a wavelet analysis. Two-dimensional Fourier power maps were constructed in the period bands 2 -aEuro parts per thousand 4 minutes, 4 -aEuro parts per thousand 6 minutes, 6 -aEuro parts per thousand 15 minutes, and beyond 15 minutes. We detect the presence of long-period oscillations with periods between 15 and 30 minutes in bright magnetic regions. These oscillations were detected from the chromosphere to the transition region. The Fourier power maps show that short-period powers are mainly concentrated in dark regions whereas long-period powers are concentrated in bright magnetic regions. This is the first report of long-period waves in quiet-Sun network regions. We suggest that the observed propagating oscillations are due to magnetoacoustic waves, which can be important for the heating of the solar atmosphere.
Resumo:
We report on the monotonic increase and the oscillation of electrical conductance in multiwalled carbon nanotubes with compressive strain. Combined experimental and theoretical analyses confirm that the conductance variation with strain is because of the transition from sp(2) to configurations that are promoted by the interaction of walls in the nanotubes. The intrawall interaction is the reason for the monotonic increase in the conduction, while the oscillations are attributable to interwall interactions. This explains the observed electromechanical oscillation in multiwalled nanotubes and its absence in single-walled nanotubes, thereby resolving a long-standing debate on the interpretation of these results. Moreover, the current carrying capability of nanotubes can be enhanced significantly by controlling applied strains. DOI: 10.1103/PhysRevLett.110.095504
Resumo:
This work presents micro-actuation of atomic force microscopy (AFM) cantilevers using piezoelectric Zinc Oxide (ZnO) thin film. In tapping mode AFM, the cantilever is driven near its resonant frequency by an external oscillator such as piezotube or stack of piezoelectric material. Use of integrated piezoelectric thin film for AFM cantilever eliminates the problems like inaccurate tuning and unwanted vibration modes. In this work, silicon AFM cantilevers were sputter deposited with ZnO piezoelectric film along with top and bottom metallic electrodes. The self-excitation of the ZnO coated AFM cantilever was studied using Laser Doppler Vibrometer (LDV). At its resonant frequency (227.11 kHz), the cantilever displacement varies linearly with applied excitation voltage. We observed an increase in the actuation response (131nm/V) due to improved quality of ZnO films deposited at 200 degrees C.
Resumo:
This paper reports on the fabrication of cantilever silicon-on-insulator (SOI) optical waveguides and presents solutions to the challenges of using a very thin 260-nm active silicon layer in the SOI structure to enable single-transverse-mode operation of the waveguide with minimal optical transmission losses. In particular, to ameliorate the anchor effect caused by the mean stress difference between the active silicon layer and buried oxide layer, a cantilever flattening process based on Ar plasma treatment is developed and presented. Vertical deflections of 0.5 mu m for 70-mu m-long cantilevers are mitigated to within few nanometers. Experimental investigations of cantilever mechanical resonance characteristics confirm the absence of significant detrimental side effects. Optical and mechanical modeling is extensively used to supplement experimental observations. This approach can satisfy the requirements for on-chip simultaneous readout of many integrated cantilever sensors in which the displacement or resonant frequency changes induced by analyte absorption are measured using an optical-waveguide-based division multiplexed system.
Resumo:
The design and analysis of an optical read-out scheme based on a grated waveguide (GWG) resonator for interrogating microcantilever sensor arrays is presented. The optical system consisting of a micro cantilever monolithically integrated in proximity to a grated waveguide (GWG), is realized in silicon optical bench platform. The mathematical analysis of the optical system is performed using a Fabry-Perot interferometer model with a lossy cavity formed between the cantilever and the GWG and an analytical expression is derived for the optical power transmission as a function of the cantilever deflection which corresponds to cavity width variation. The intensity transmission of the optical system for different cantilever deflections estimated using the analytical expression captures the essential features exhibited by a FDTD numerical model.
Resumo:
Micro- and nano-mechanical resonators have been proposed for a variety of applications ranging from mass sensing to signal processing. Often their actuation and/or detection involve external subsystems that are much larger than the resonator itself. We have designed a simple microcantilever resonator with integrated sensor and actuator, facilitating the integration of large arrays of resonators. This unique design can be manufactured with a low-cost fabrication process, involving just a single step of lithography. The bilayer cantilever of gold and silicon dioxide is used as piezoresistive sensor as well as thermal bimorph actuator. The ac current used for actuation and the dc current used for piezoresistive detection are separated in the frequency-domain using a bias-tee circuit configuration. The resonant response is measured by detecting the second harmonic of the actuation current using a lock-in amplifier.