267 resultados para COUPLING REACTIONS
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.
Resumo:
Using first-principles density-functional calculations, we determine and analyze the Born effective charges Z(*) that describe the coupling between electric field and atomic displacements for ferromagnetic double-perovskite compound, La2NiMnO6. We find that th Born effective charge matrix of Ni in La2NiMnO6, has an anomalously large antisymmetric component, whose magnitude reduces substantially upon change in the magnetic ordering between Ni and Mn, showing it to be a magnetism-dependent electrostructural coupling. We use a local picture of the electronic structure obtained with Wannier functions, along with its band-by-band decomposition to determine its electronic origin.
Resumo:
The methoxycyclophosphazenes [NP(OMe),], (n = 3-6) rearrange on heating to give oxocyclophosphazanes, [N(Me)PO(OMe)],. Isomeric products are formed when n = 4-6. The lH, ,lP, and 13C n.m.r. data for the starting materials and the products are presented. The ethoxy- and n-propoxy-derivatives N,P,( OR)* do not undergo the above rearrangement. The geminal derivatives N,P,R,(OMe), (R = Ph or NHBut) on heating yield both fully and partially rearranged products, namely dioxophosphaz-1 -enes and oxophosphazadienes, as shown by 270- MHz lH n.m.r. spectroscopy. The non-geminal derivative N,P,( NMe,),(OMe), gives only the fully rearranged product N,Me,P,(NMe,),O,(OMe), whose structure has been established from its lH and 31P n.m.r. spectra.
Resumo:
Preferential yield of ring expansion and rearrangement products through α-cleavage of tetramethyl-3-thio-1,3-cyclobutanedione (1) and 3-mercapto-2,2,4-trimethyl-3-pentenoic acid β-(thio lactone) (2) involving diradical and carbene has been observed upon photolysis of 1 and 2.
Resumo:
Arylalkylcyclopropenethiones undergo highly regioselective photochemical a-cleavage via thioketene carbene intermediates, giving rise to products derived from the less stabilized carbene. UHF MIND0/3 calculations provide an insight into this unexpected regioselectivity. The nx* triplet of cyclopropenethione is calculated to have a highly unsymmetrical geometry with an elongated C-C bond, a delocalized thiaaUyl fragment, and a pyramidal radicaloid carbon (which eventually becomes the carbene center). From this molecular electronic structure, aryl group stabilization is expected to be more effective at the thiaallyl group rather than at the pyramidal radical center. Thus, the stability of the substituted triplet thione rather than that of the thioketene carbene determines the preferred regiochemistry of cleavage. The unusual structure of the cyclopropenethione triplet is suggested to be related to one of the Jahn-Teller distorted forms of the cyclopropenyl radical. An alternative symmetrical structure is adopted by the corresponding triplet of cyclopropenone, partly accounting for its differing photobehavior. A similar structural dichotomy is demonstrated for the corresponding radical anions as well.
Resumo:
Hexafluorodisilane has been prepared by the fluorination of hexachlorodisilane or hexabromodisilane by potassium fluoride in boiling acetonitrile, in yields approximating 45 and 60% respectively. Hexafluorodisilane has been characterised by infrared spectral data, vapour density measurements and analytical data. Both hexafluorodisilane and hexachlorodisilane are found to react with sulfur trioxide when heated to 400°C for 12 h. The products of reaction are silicon tetrafluoride, silica and sulfur dioxide with hexafluorodisilane while hexachlorodisilane in addition gives rise to hexachlorodisiloxane.
Resumo:
Attempts have been made to understand the curing reactions in carboxy-terminated polybutadiene (CTPB), which happens to be the most practical binder in advanced solid composite propellants. The curing of CTPB has been studied for different ratios of curing agents (MAPO and Epoxide) by gel content, molecular weight, crosslink density, and penetration temperature measurements, and the optimum composition of curators for effective curing of CTPB has been determined. Activation energy calculations on the curing of CTPB with 9.5% epoxide and 0.5% MAPO in the temperature range 75100°C gave 14.1 kcal/mol for which a diffusion-controlled or acid-catalyzed epoxide ring opening mechanism has been suggested for the curing process in CTPB.
Resumo:
A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator–to–superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.
Resumo:
Abstract is not available.
Resumo:
Thionyl fluoride undergoes quantitative oxidation with chloramine-T and reduction with lithium aluminium hydride and sodium borohydride. At elevated temperatures, (>150°C) it reacts with metals such as copper, silver, zinc and lead forming the corresponding metal sulphides, fluorides and sulphur dioxide. With the respective metal oxides, the metal fluorides and sulphur dioxide are formed.
Resumo:
A new class of solid compounds, viz., bisthiocarbonohydrazones and thiosemicarbazones, have been found to be hypergolic with fuming nitric acid. The observed ignition delays of these hypergols have been compared with those of the monothiocarbonohydrazones-nitric acid systems and explained in terms of the chemical reactions-neutralization, oxidation, and nitration-occurring in the preignition stage. p-Nitrobenzoic acid, benzoic acid, benzaldehyde, sulfur trioxide, nitrogen dioxide, and nitrogen have been isolated as preignition reaction intermediates in the mono- and bisbenzaldehydethiocarbonohydrazone-nitric acid systems. A scheme of reactions occurring in the preignition stage is proposed based on the formation of these products.
Resumo:
A change-over from SN2(P) to SN1(P) mechanism is established for the chlorine replacement reactions of halogenocyclophosphazenes; this mechanistic change-over helps in rationalising the diverse findings reported for this class of reactions.
Resumo:
The dynamics of reactions with low internal barriers are studied both analytically and numerically for two different models. Exact expressions for the average rate,kI, are obtained by solving the associated first passage time problems. Both the average rate constant, kI, and the numerically calculated long-time rate constant, kL, show a fractional power law dependence on the barrier height for very low barriers. The crossover of the reaction dynamics from low to high barrier is investigated.