182 resultados para CONCENTRATED COLLOIDAL DISPERSIONS
Resumo:
Studies on ignition and combustion of distillery effluent containing solids consisting of 38 +/- 2% inorganics and 62 +/- 2% of organics (cane sugar derivatives) have been carried out in order to investigate the role of droplet size and ambient temperature in the process of combustion. Experiments were conducted on in liquid droplets of effluent having solids concentration 65% and (2) spheres of died (100% solids) effluent of diameters ranging from 0.5 to 25 mm. These spheres were introduced into a furnace where air temperature ranged from 500 to 1000 degrees C, and they burned with two distinct regimes of combustion-flaming and glowing. The ignition delay of the 65% concentration effluent increases with diameter as in the case of nonvolatile droplets, while that of dried spheres appears to be independent of size. The ignition delay shows Arrhenius dependence on temperature. The flaming combustion involves a weight loss of 50-80%, depending on ambient temperature, and the flaming time is given by t(f) similar to d(0)(2), as in the case of liquid fuel droplets and wood spheres. Char glowing involves weight loss of an additional 10-20%, with glowing time behaving as t(c) similar to d(0)(2) as in the case of wood char, even though the inert content of effluent char is as large as 50% compared to 2-3% in wood char Char combustion has been modeled, and the results of this model compare well with the experimental results.
Resumo:
We have carried out Brownian dynamics simulations of binary mixtures of charged colloidal suspensions of two different diameter particles with varying volume fractions phi and charged impurity concentrations n(i). For a given phi, the effective temperature is lowered in many steps by reducing n(i) to see how structure and dynamics evolve. The structural quantities studied are the partial and total pair distribution functions g(tau), the static structure factors, the time average g(<(tau)over bar>), and the Wendt-Abraham parameter. The dynamic quantity is the temporal evolution of the total meansquared displacement (MSD). All these parameters show that by lowering the effective temperature at phi = 0.2, liquid freezes into a body-centered-cubic crystal whereas at phi = 0.3, a glassy state is formed. The MSD at intermediate times shows significant subdiffusive behavior whose time span increases with a reduction in the effective temperature. The mean-squared displacements for the supercooled liquid with phi = 0.3 show staircase behavior indicating a strongly cooperative jump motion of the particles.
Resumo:
We report the Brownian dynamics simulation results on the translational and bond-angle-orientational correlations for charged colloidal binary suspensions as the interparticle interactions are increased to form a crystalline (for a volume fraction phi = 0.2) or a glassy (phi = 0.3) state. The translational order is quantified in terms of the two- and four-point density autocorrelation functions whose comparisons show that there is no growing correlation length near the glass transition. The nearest-neighbor orientational order is determined in terms of the quadratic rotational invariant Q(l) and the bond-orientational correlation functions g(l)(t). The l dependence of Q(l) indicates that icosahedral (l = 6) order predominates at the cost of the cubic order (l = 4) near the glass as well as the crystal transition. The density and orientational correlation functions for a supercooled liquid freezing towards a glass fit well to the streched-exponential form exp[-(t/tau)(beta)]. The average relaxation times extracted from the fitted stretched-exponential functions as a function of effective temperatures T* obey the Arrhenius law for liquids freezing to a crystal whereas these obey the Vogel-Tamman-Fulcher law exp[AT(0)*/(T* - T-0*)] for supercooled Liquids tending towards a glassy state. The value of the parameter A suggests that the colloidal suspensions are ''fragile'' glass formers like the organic and molecular liquids.
Resumo:
We set up the generalized Langevin equations describing coupled single-particle and collective motion in a suspension of interacting colloidal particles in a shear how and use these to show that the measured self-diffusion coefficients in these systems should be strongly dependent on shear rate epsilon. Three regimes are found: (i) an initial const+epsilon(.2), followed by (ii) a large regime of epsilon(.1/2) behavior, crossing over to an asymptotic power-law approach (iii) D-o - const x epsilon(.-1/2) to the Stokes-Einstein value D-o. The shear dependence is isotropic up to very large shear rates and increases with the interparticle interaction strength. Our results provide a straightforward explanation of recent experiments and simulations on sheared colloids.
Resumo:
We incorporate the effects of fluctuations in a density functional analysis of the freezing of a colloidal liquid in the presence of an external potential generated by interfering laser beams. A mean-field treatment, using a density functional theory, predicts that with the increase in the strength of the modulating potential, the freezing transition changes from a first order to a continuous one via a tricritical point for a suitable choice of the modulating wavevectors. We demonstrate here that the continuous nature of the freezing transition at large values of the external potential V-e survives the presence of fluctuations. We also show that fluctuations tend to stabilize the liquid phase in the large V-e regime.
Resumo:
Flow of liquid/liquid dispersions have been investigated in a Hele-Shaw cell which contained a thin disk held between two parallel plates. This device offers a well defined flow field and also permits visual observation of the dispersed drop movement. The dispersed drops coalesce with the disk for the systems where the dispersed phase wets the disk surface. The dispersed phase accumulate at the downstream end of the disk and they detach from there as blobs. Through an accurate measurement of accumulated dispersed phase volume, the coalescence rate was determined. The coalescence efficiency in the Hele Shaw cell is determined by dividing the coalescence hate by the undisturbed flow rate of the dispersed phase through an area equal to the projected area of the disk on a plane normal to the flow direction. The coalescence efficiency first increases and then decreases with the flow rate of dispersion. The coalescence rate/disk dimensions increases with the decrease in the disk dimensions. The rate of coalescence increases with the increase in the dispersed drop diameter and it decreases with the increase in the continuous phase viscosity. The presence of surfactants reduces the coalescence rate. All these results are quantitatively explained through a model, which takes into account several important features like various mechanism of drainage, the roles of dispersion and continuous phase viscosities, and the drop deformation.
Resumo:
Surfactant-intercalated layered double-hydroxide solid Mg-Al LDH-dodecyl sulfate (DDS) undergoes rapid and facile delamination to its ultimate constituent, single sheets of nanometer thickness and micrometer size, in a nonpolar solvent such as toluene to form stable dispersions. The delaminated nanosheets are electrically neutral because the surfactant chains remain tethered to the inorganic layer even on exfoliation. With increasing volume fraction of the solid, the dispersion transforms from a free-flowing sol to a solidlike gel. Here we have investigated the sol-gel transition in dispersions of the hydrophobically modified Mg-Al LDH-DDS in toluene by rheology, SAXS, and (1)H NMR measurements. The rheo-SAXS measurements show that the sharp rise in the viscosity of the dispersion during gel formation is a consequence of a tactoidal microstructure formed by the stacking of the nanosheets with an intersheet separation of 3.92 nm. The origin and nature of the attractive forces that lead to the formation of the tactoidal structure were obtained from 1D and 2D (1)H NMR measurements that provided direct evidence of the association of the toluene solvent molecules with the terminal methyl of the tethered DDS surfactant chains. Gel formation is a consequence of the attractive dispersive interactions of toluene molecules with the tails of DDS chains anchored to opposing Mg-Al LDH sheets. The toluene solvent molecules function as molecular ``glue'' holding the nanosheets within the tactoidal microstructure together. Our study shows how rheology, SAXS, and NMR measurements complement each other to provide a molecular-level description of the sol-gel transition in dispersions of a hydrophobically modified layered double hydroxide.
Resumo:
The nanochemistry of calcium remains unexplored, which is largely due to the inaccessibility of calcium nanoparticles in an easy to handle form by conventional methods of synthesis as well as its highly reactive and pyrophoric nature. The synthesis of colloidal Ca nanoparticles by the solvated metal atom dispersion (SMAD) method is described. The as-prepared Ca-THF nanoparticles, which are polydisperse, undergo digestive ripening in the presence of a capping agent, hexadecyl amine (HDA) to afford highly monodisperse colloids consisting of 2-3 nm sized Ca-HDA nanoparticles. These are quite stable towards precipitation for long periods of time, thereby providing access to the study of the nanochemistry of Ca. Particles synthesized in this manner were characterized by UV-visible spectroscopy, high resolution electron microscopy, and powder X-ray diffraction methods. Under an electron beam, two adjacent Ca nanoparticles undergo coalescence to form a larger particle.
Resumo:
Experiments are carried out in a shock tunnel at a nominal Mach number of 5.75 in order to study the effect of concentrated energy deposition on the drag force experienced by a 120° blunt cone. Electrical energy was deposited along the stagnation streamline of the model using a high voltage DC discharge circuit (1.5 – 3.5KW) and the drag force was measured by a single component accelerometer balance. Numerical simulations were also carried complimenting the experiments. These simulations showed a substantial drag reduction (20% ~ 65%) whereas the experiments show no appreciable reduction in drag
Resumo:
``Soggy sand'' electrolyte, which essentially consists of oxide dispersions in nonaqueous liquid salt solutions, comprises an important class of soft matter electrolytes. The ion transport mechanism of soggy sand electrolyte is complex. The configuration of particles in the liquid solution has been observed to depend in a nontrivial manner on various parameters related to the oxide (concentration, size, surface chemistry) and solvent (dielectric constant, viscosity) as well as time. The state of the particles in solution not only affects ionic conductivity but also effectively the mechanical and electrochemical properties of the solid liquid composite. Apart from comprehensive understanding of the underlying phenomena that govern ion transport, which will benefit design of better electrolytes, the problem has far-reaching implications in diverse fields such as catalysis, colloid chemistry, and biotechnology.
Resumo:
Colloidal suspensions made up of oppositely charged particles have been shown to self-assemble into substitutionally ordered superlattices. For a given colloidal suspension, the structure of the superlattice formed from self-assembly depends on its composition, charges on the particles, and charge screening. In this study we have computed the pressure-composition phase diagrams of colloidal suspensions made up of binary mixtures of equal sized and oppositely charged particles interacting via hard core Yukawa potential for varying values of charge screening and charge asymmetry. The systems are studied under conditions where the thermal energy is equal or greater in magnitude to the contact energy of the particles and the Debye screening length is smaller than the size of the particles. Our studies show that charge asymmetry has a significant effect on the ability of colloidal suspensions to form substitutionally ordered superlattices. Slight deviations of the charges from the stoichiometric ratio are found to drastically reduce the thermodynamic stability of substitutionally ordered superlattices. These studies also show that for equal-sized particles, there is an optimum amount of charge screening that favors the formation of substitutionally ordered superlattices. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3700226]
Resumo:
We have fabricated nano-Schottky diodes of CdTe QDs with platinum metal electrodes in metal-semiconductor-metal planar configuration by drop-casting. The observed high value of ideality factor (13.3) of the diode was possibly due to the presence of defects in colloidal QDs. We observed asymmetry and non-linear nature of I-V characteristics between forward and reverse directions, which has been explained in terms of size distributions of quantum dots due to coffee ring effect. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. doi:10.1063/1.3669408]
Resumo:
An imbalance between breakup and coalescence of drops in turbulent liquid-liquid dispersions leads to inversion of phases the dispersed phase becomes continuous and vice versa. An increase in the rate of coalescence of drops is expected to decrease the dispersed phase fraction at which inversion occurs. In the present work, we increased the rate of coalescence of drops by adding electrolyte to pure liquid-liquid dispersions. The experiments carried out for three representative liquid-liquid systems show that contrary to the expectation the addition of an electrolyte increases the dispersed phase fraction at which inversion occurs for both, oil-in-water and water-in-oil dispersions. The step-down experiments confirm that the addition of the electrolyte increases the rate of coalescence of drops in lean dispersions under the same conditions, thereby confirming an anomalous effect of the presence of an electrolyte on the stability of dispersions. (C) 2012 Elsevier Ltd. All rights reserved.