53 resultados para CMS LHC
Resumo:
We investigate the effects of new physics scenarios containing a high mass vector resonance on top pair production at the LHC, using the polarization of the produced top. In particular we use kinematic distributions of the secondary lepton coming from top decay, which depends on top polarization, as it has been shown that the angular distribution of the decay lepton is insensitive to the anomalous tbW vertex and hence is a pure probe of new physics in top quark production. Spin sensitive variables involving the decay lepton are used to reconstruct the top polarization. Some sensitivity is found for the new couplings of the top.
Resumo:
In this talk I shall begin by summarizing the importance of the Higgs physics studies at the Large Hadron Collider (LHC). I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at the LHC. I have added to the writeup, recent experimental results from the LHC which have become available since the time of the workshop.
Resumo:
We consider how the measurement of top polarization at the Tevatron can be used to characterize and discriminate among different new physics models that have been suggested to explain the anomalous top forward-backward asymmetry reported at the Tevatron. This has the advantage of catching the essence of the parity-violating effect characteristic to the different suggested new physics models. Other observables constructed from these asymmetries are shown to be useful in discriminating between the models, even after taking into account the statistical errors. Finally, we discuss some signals at the 7 TeV LHC.
Resumo:
Examining theories with an extended strong interaction sector such as axigluons or flavour universal colorons, we find that the constraints obtained from the current data on $t \bar t$ production at the Tevatron are in the range of $\sim {\cal O}$ TeV and thus competitive with those obtained from the dijet data. We point out that for large axigluon/coloron masses, the limits on the coloron mass may be different than those for the axigluon even for $\cot \xi = 1$. We also compute the expected forward-backward asymmetry for the case of the axigluons which would allow it to be discriminated against the SM as also the colorons. We further find that at the LHC, the signal should be visible in the $t \bar t$ invariant mass spectrum for a wide range of axigluon and coloron masses that are still allowed. We point out how top polarisation may be used to further discriminate the axigluon and coloron case from the SM as well as from each other.
Resumo:
Report of the Higgs working group for the Workshop "Physics at TeV Colliders", Les Houches, France 8-18 June 1999. It contains 6 separate sections: 1. Measuring Higgs boson couplings at the LHC. 2. Higgs boson production at hadron colliders at NLO. 3. Signatures of Heavy Charged Higgs Bosons at the LHC. 4. Light stop effects and Higgs boson searches at the LHC. 5. Double Higgs production at TeV Colliders in the MSSM. 6. Programs and Tools for Higgs Bosons.
Resumo:
In the present talk, we will discuss a six dimensional mass generation for the neutrinos. The SM neutrinos live on a 3-brane and interact via a brane localised mass term with a Weyl singlet neutrino residing in all the six dimensions. We present the physical neutrino mass spectrum and show that the active neutrino mass and the KK masses have a logarithmic cut-off dependence at the tree level. This translates in to a renormalisation group running of n -masses above the KK compactification scale coming from classical effects without any SM particles in the spectrum.This could have effects in neutrinoless double beta decay experiments.
Resumo:
The search for heavy resonances in the dijet channel is part of the on-going physics programme, both at the Tevatron and at the LHC. Lower limits have been placed on the masses of dijet resonances predicted in a wide variety of models. However, across experiments, the search strategy assumes that the effect of the new particles is well-approximated by on-shell production and subsequent decay into a pair of jets. We examine the impact of off-shell effects on such searches, particularly for strongly interacting resonances.
Resumo:
We study the possibility of finger printing a strongly interacting W boson sector which is consistent with present day LHC searches at the ILC with longitudinal as well as transversely polarized electron and positron beams. We account for the final state interaction using a suitable Omnes formalism in terms of a plausible resonance description, and carry out thorough analyses of cross sections, asymmetries and angular distributions of the W's. We carry out a comparison with other extensions of the Standard Model, where heavy additional Z' bosons arise naturally. We also consider the effect of the strong final state interaction on a correlation that depends on (phi(-) -phi(+)),where the phi-(+) are the azimuthal angles of decay leptons, and find that it is a useful discriminant.
Resumo:
An extension theorem for holomorphic mappings between two domains in C-2 is proved under purely local hypotheses.
Resumo:
The flux tube model offers a pictorial description of what happens during the deconfinement phase transition in QCD. The three-point vertices of a flux tube network lead to formation of baryons upon hadronization. Therefore, correlations in the baryon number distribution at the last scattering surface are related to the preceding pattern of the flux tube vertices in the quark-gluon plasma, and provide a signature of the nearby deconfinement phase transition. I discuss the nature of the expected signal, and how to extract it from the experimental data for heavy ion collisions at RHIC and LHC.
Resumo:
In minimal supergravity (mSUGRA) or CMSSM, one of the main co-annihilating partners of the neutralino is the lightest stau, (tau) over tilde (1). In the presence of flavour violation in the right-handed sector, the co-annihilating partner would be a flavour mixed state. The flavour effect is two-fold: (a) It changes the mass of (tau) over tilde (1) thus modifying the parameter space of the co-annihilation and (b) flavour violating scatterings could now contribute to the cross-sections in the early Universe. In fact, it is shown that for large enough delta similar to 0.2, these processes would constitute the dominant channels in co-annihilation regions. The amount of flavour mixing permissible is constrained by flavour violating tau -> mu or tau -> e processes. For Delta(RR) mass insertions, the constraints from flavour violation are not strong enough in some regions of the parameter space due to partial cancellations in the amplitudes. In mSUGRA, the regions with cancelations within LFV amplitudes do not overlap with the regions of co-annihilations. In non-universal Higgs model (NUHM), however, these regions do overlap leading to significant flavoured co-annihilations. At the LHC and other colliders, these regions can constitute for interesting signals.
Resumo:
The presence of new matter fields charged under the Standard Model gauge group at intermediate scales below the Grand Unification scale modifies the renormalization group evolution of the gauge couplings. This can in turn significantly change the running of the Minimal Supersymmetric Standard Model parameters, in particular the gaugino and the scalar masses. In the absence of new large Yukawa couplings we can parameterise all the intermediate scale models in terms of only two parameters controlling the size of the unified gauge coupling. As a consequence of the modified running, the low energy spectrum can be strongly affected with interesting phenomenological consequences. In particular, we show that scalar over gaugino mass ratios tend to increase and the regions of the parameter space with neutralino Dark Matter compatible with cosmological observations get drastically modified. Moreover, we discuss some observables that can be used to test the intermediate scale physics at the LHC in a wide class of models.
Resumo:
We report on the status of supersymmetric seesaw models in the light of recent experimental results on mu -> e + gamma, theta(13) and the light Higgs mass at the LHC. SO(10)-like relations are assumed for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan beta is still allowed. This remaining region can be ruled out by an order of magnitude improvement in the current limit on BR(mu -> e + gamma). We also explore a model with non-universal Higgs mass boundary conditions at the high scale. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations within the flavor violating terms. Such cancellations might relax the severe constraints imposed by lepton flavor violation compared to mSUGRA. Nevertheless for a large region of parameter space the predicted rates lie within the reach of future experiments once the light Higgs mass constraint is imposed. We also update the potential of the ongoing and future experimental searches for lepton flavor violation in constraining the supersymmetric parameter space.
Resumo:
We revisit the issue of considering stochasticity of Grassmannian coordinates in N = 1 superspace, which was analyzed previously by Kobakhidze et al. In this stochastic supersymmetry (SUSY) framework, the soft SUSY breaking terms of the minimal supersymmetric Standard Model (MSSM) such as the bilinear Higgs mixing, trilinear coupling, as well as the gaugino mass parameters are all proportional to a single mass parameter xi, a measure of supersymmetry breaking arising out of stochasticity. While a nonvanishing trilinear coupling at the high scale is a natural outcome of the framework, a favorable signature for obtaining the lighter Higgs boson mass m(h) at 125 GeV, the model produces tachyonic sleptons or staus turning to be too light. The previous analyses took Lambda, the scale at which input parameters are given, to be larger than the gauge coupling unification scale M-G in order to generate acceptable scalar masses radiatively at the electroweak scale. Still, this was inadequate for obtaining m(h) at 125 GeV. We find that Higgs at 125 GeV is highly achievable, provided we are ready to accommodate a nonvanishing scalar mass soft SUSY breaking term similar to what is done in minimal anomaly mediated SUSY breaking (AMSB) in contrast to a pure AMSB setup. Thus, the model can easily accommodate Higgs data, LHC limits of squark masses, WMAP data for dark matter relic density, flavor physics constraints, and XENON100 data. In contrast to the previous analyses, we consider Lambda = M-G, thus avoiding any ambiguities of a post-grand unified theory physics. The idea of stochastic superspace can easily be generalized to various scenarios beyond the MSSM. DOI: 10.1103/PhysRevD.87.035022