54 resultados para CD8-Positive T-Lymphocytes
Resumo:
Rotating shear flows, when angular momentum increases and angular velocity decreases as functions of radiation coordinate, are hydrodynamically stable under linear perturbation. The Keplerian flow is an example of such a system, which appears in an astrophysical context. Although decaying eigenmodes exhibit large transient energy growth of perturbation which could govern nonlinearity in the system, the feedback of inherent instability to generate turbulence seems questionable. We show that such systems exhibiting growing pseudo-eigenmodes easily reach an upper bound of growth rate in terms of the logarithmic norm of the involved non-normal operators, thus exhibiting feedback of inherent instability. This supports the existence of turbulence of hydrodynamic origin in the Keplerian accretion disc in astrophysics. Hence, this answers the question of the mismatch between the linear theory and experimental/observed data and helps in resolving the outstanding question of the origin of turbulence therein.
Resumo:
Several H-2 defined cell lines were examined for their ability to support infection and replication of Japanese encephalitis virus (JEV) before their use in in vitro and in vivo stimulation protocols for generating cytotoxic T lymphocytes (CTLs) against JEV. Among II different cell lines tested, two H-2(d) macrophage tumour lines (P388D1, RAW 264.7), an H-2(d) hybridoma (Sp2/0), an H-2K(k)D(d) neuroblastoma (Neuro 2a), and H-2(k) fibroblast cell line (L929) were found to support JEV infection and replication. These cell lines were used to generate anti-JEV CTLs by using in vivo immunization followed by in vitro stimulation of BALB/c mice. We observed that not only syngeneic and allogeneic infected cells but also JEV-infected xenogeneic cells could prime BALB/c mice for the generation of JEV-specific CTLs upon subsequent in vitro stimulation of splenocytes with JEV-infected syngeneic cells. Although infected xenogeneic cells were used for immunization, the anti-JEV effecters that were generated lysed infected syngeneic targets but not JEV-infected xenogeneic or allogeneic target cells in a 5h Cr-51 release assay. These anti-JEV effecters recognized syngeneic target cells infected with West Nile virus to a lesser extent and were shown to be Lyt-2.2(+) T cells. The results of unlabelled cold target competition studies suggested alterations in the cell surface expression of viral antigenic determinants recognized by these CTLs. We further demonstrate that the JEV-specific CTLs generated could virtually block the release of infectious virus particles from infected P388D1 and Neuro 2a cells in vitro.
Resumo:
Bi3+ ions substituting at Ba-sites in a limited concentration range with another donor dopant occupying the Ti-sites in polycrystalline BaTiO3 enhanced the positive temperature coefficient of resistance (PTCR) by over seven orders of magnitude. These ceramics did not require normal post sinter annealing or a change to an oxygen atmosphere during annealing. These ceramics had low porosities coupled with better stabilities to large applied electric fields and chemically reducing atmospheres. Bi3+ ions limited the grain growth to less than 8 mum in size, they enhanced the concentration of acceptor-type trap centres at the grain-boundary-layer regions and maintained complete tetragonality at low grain sizes in BaTiO3 ceramics.
Resumo:
The protective ability of cytotoxic T cells (CTL) raised in vitro against Japanese encephalitis virus (JEV) was examined by adoptive transfer experiments. Adoptive transfer of anti-JEV effecters by intracerebral (i.c.) but not by intraperitoneal (i.p.) or intravenous (i.v.) routes protected adult BALB/c mice against lethal i.c. JEV challenge. In contrast to adult mice, adoptive transfer of anti-JEV effecters into newborn (4-day-old) and suckling (8-14-day-old) mice did not confer protection. However, virus-induced death was delayed in suckling mice compared to newborn mice upon adoptive transfer. The specific reasons for lack of protection in newborn mice are not clear but virus load was found to be higher in newborn mice brains compared to those of adults and virus clearance was observed only in adult mice brains but not in newborn mice brains upon adoptive transfer. Specific depletion of Lyt 2.2(+), L3T4(+) or Thy-1(+) T cell populations before adoptive transfer abrogated the protective ability of transferred effecters. However, when Lyt 2.2(+) cell-depleted and L3T4(+) cell-depleted effecters were mixed and transferred into adult mice the protective activity was retained, demonstrating that both Lyt 2.2(+) and L3T4(+) T cells are necessary to confer protection. Although the presence of L3T4(+) T cells in adoptively transferred effector populations enhanced virus-specific serum neutralizing antibodies, the presence of neutralizing antibodies alone without Lyt 2.2(+) cells was not sufficient to confer protection.
Resumo:
The internal resistance of a stabilized alpha-nickel hydroxide electrode is found to be lower than that of a beta-nickel hydroxide electrode as shown from studies of the open-circuit potential-time transients at all states-of-charge. Nevertheless, the self-discharge rates of the former is higher. Gasometric studies reveal that the charging efficiency of the alpha-nickel hydroxide electrode is higher than that of the beta-nickel hydroxide electrode.
Resumo:
Ten different mouse cell lines were examined for Japanese encephalitis virus (JEV) infection in vitro and then tested for their ability to generate virus specific cytotoxic T lymphocytes (CTL). Among all cell lines examined, Neuro La (a neuroblastoma) was readily infected with JEV as examined by immunofluorescence and viral replication. Among other cells, P388D1, RAW 264.7 (Macrophage origin), Sp2/0 (B-cell Hybridoma), YAC-1 (T-cell lymphoma), and L929 (Fibroblast) were semipermissive to JEV infection. The cytopathic effects caused by progressive JEV infection varied from cell line to cell line. In the case of YAC-1 cells long-term viral antigen expression was observed without significant alterations in cell viability. Intermediate degrees of cytopathicity are seen in RAW 264.7 and L929 cells while infection of PS, Neuro 2a, P388D1 and Sp2/0 caused major viability losses. All infected cell lines were able to prime adult BALB/c (H-2(d)) mice for the generation of secondary JEV specific CTL. In contrast to YAC-1, the permissive neuroblastoma cell line Neuro 2a (H-2K(k)D(d)) was found to be least efficient in its ability to stimulate anti-viral CTL generation. Cold target competition studies demonstrated that both Neuro 2a and YAC-1 (H-2K(k)D(d)) cells expressed similar viral determinants that are recognised by CTL, suggesting that the reason for the lower ability of Neuro 2a to stimulate anti-viral CTL was not due to lack of viral CTL determinants. These findings demonstrate that a variety of mouse cell lines can be infected with Japanese encephalitis virus, and that these infected cells could be utilised to generate virus specific CTL in BALB/c mice.
Resumo:
Donor-doped n-(Ba,Pb)TiO3 polycrystalline ceramics exhibit distinctly two-step positive temperature coefficient of resistance (PTCR) characteristics when formulated with suitable combinations of B2O3 and Al2O3 as grain boundary modifiers by heterogeneous addition. B2O3 or Al2O3 when added singularly resulted in either steep or broad PTCR jumps respectively across the phase transition. The two-step PTCR is attributed to the activation of the acceptor states, created through B2O3 and Al2O3, for various temperature regimes above the Curie point (T-c). The changing pattern of trap states is evident from the presence of Ti4+-O--Al3+ type hole centres in the grain boundary layer regions, identified in the electron paramagnetic resonance (EPR) spectra. That charge redistribution occurs among the inter-band gap defect states on crossing the Curie temperature is substantiated by the temperature coefficient in the EPR results. Capacitance-voltage results clearly show that there is an increase in the density of trap states with the addition of B2O3 and Al2O3. The spread in energy values of these trap states is evident from the large change in barrier height (phi similar or equal to 0.25-0.6 eV) between 500 and 650 K.
Resumo:
Twelve novel cationic cholesterol derivatives with different linkage types between the cationic headgroup and the cholesteryl backbone have been developed. These have been tested for their efficacies as gene transfer agents as mixtures with dioleoyl phosphatidylethanolamine (DOPE). A pronounced improvement in transfection efficiency was observed when the cationic center was linked to the steroid backbone using an ether type bond. Among these, cholest-5-en-3b-oxyethane-N, N,N-trimethylammonium bromide (2a) and cholest-5-en-3b-oxyethane-N, N-dimethyl-N-2-hydroxyethylammonium bromide (3d) showed transfection efficiencies considerably greater than commercially available reagents such as Lipofectin or Lipofectamine. To achieve transfection, 3d did not require DOPE. Increasing hydration at the headgroup level for both ester- and ether-linked amphiphiles resulted in progressive loss of transfection efficiency. Transfection efficiency was also greatly reduced when a 'disorder'-inducing chain like an oleyl (cis-9-octadecenyl) segment was added to these cholesteryl amphiphiles. Importantly, the transfection ability of 2a with DOPE in the presence of serum was significantly greater than for a commercially available reagent, Lipofectamine. This suggests that these novel cholesterol-based amphiphiles might prove promising in applications involving liposome-mediated gene transfection. This investigation demonstrates the importance of structural features at the molecular level for the design of cholesterol-based gene delivery reagents that would aid the development of newer, more efficient formulations based on this class of molecules.
Resumo:
ASTM D2303 standard provides a method for evaluating the tracking and erosion resistance of polymeric insulators under ac voltages. In this paper, the above method has been extended for evaluating the performance of the insulators under dc stresses. Tests were conducted on polymeric silicone rubber (SR) insulators under positive and negative dc stresses. Micron sized Alumina trihydrate (uATH) and nano sized Alumina (nALU) were used as fillers in SR matrix to improve the resistance to tracking and erosion. Results suggest that SR composites perform better under negative dc than under positive dc voltages. Eroded mass and leakage current data support the above result. Samples with low concentration of nano alumina fillers performed on par with the samples with large loadings of uATH.
Resumo:
Redox reactions which occur at positive potentials such as ferrous/ferric, hydroquinone/quinone, ferrocyanide/ferricyanide etc. in aqueous acidic electrolytes cannot be studied on non-platinum metals, for example, a Ni electrode. On the contrary, these reactions occur on polyaniline (PANI) modified Ni electrodes, as evidenced from cyclic voltammetry, amperometry and steady-state polarization experiments. Under identical experimental conditions of scan rate (v) and concentration (C), the peak current density (i(p)) values of Fe2+/Fe3+ redox reaction are greater on the PANI modified Ni than on Pt. Additionally, the peak potential separation (DeltaE(p)) of the voltammogram is lesser on the PANI modified Ni. With an increase in thickness of the PANI, DeltaE(p) increases suggesting that the redox reactions tend to depart from the reversibility. Scanning electron micrographs reveal the presence of a crystalline deposit of PANI on Ni when the thickness of PANI is about 0.08 mum. However, the PANI becomes amorphous and porous at higher thickness values. Raman spectroscopy and X-ray diffraction studies corroborate the observations made out of scanning electron microscopy. Higher catalytic activity of PANI is attributed to crystalline nature of PANI on Ni. Exchange current density and standard rate constant of Fe2+/Fe(3+)redox reaction are evaluated. (C) 2002 Published by Elsevier Science B.V.
Resumo:
This paper addresses the problem of maximum margin classification given the moments of class conditional densities and the false positive and false negative error rates. Using Chebyshev inequalities, the problem can be posed as a second order cone programming problem. The dual of the formulation leads to a geometric optimization problem, that of computing the distance between two ellipsoids, which is solved by an iterative algorithm. The formulation is extended to non-linear classifiers using kernel methods. The resultant classifiers are applied to the case of classification of unbalanced datasets with asymmetric costs for misclassification. Experimental results on benchmark datasets show the efficacy of the proposed method.
Resumo:
A geometric and non parametric procedure for testing if two finite set of points are linearly separable is proposed. The Linear Separability Test is equivalent to a test that determines if a strictly positive point h > 0 exists in the range of a matrix A (related to the points in the two finite sets). The algorithm proposed in the paper iteratively checks if a strictly positive point exists in a subspace by projecting a strictly positive vector with equal co-ordinates (p), on the subspace. At the end of each iteration, the subspace is reduced to a lower dimensional subspace. The test is completed within r ≤ min(n, d + 1) steps, for both linearly separable and non separable problems (r is the rank of A, n is the number of points and d is the dimension of the space containing the points). The worst case time complexity of the algorithm is O(nr3) and space complexity of the algorithm is O(nd). A small review of some of the prominent algorithms and their time complexities is included. The worst case computational complexity of our algorithm is lower than the worst case computational complexity of Simplex, Perceptron, Support Vector Machine and Convex Hull Algorithms, if d
Resumo:
Competition theory predicts that local communities should consist of species that are more dissimilar than expected by chance. We find a strikingly different pattern in a multicontinent data set (55 presence-absence matrices from 24 locations) on the composition of mixed-species bird flocks, which are important sub-units of local bird communities the world over. By using null models and randomization tests followed by meta-analysis, we find the association strengths of species in flocks to be strongly related to similarity in body size and foraging behavior and higher for congeneric compared with noncongeneric species pairs. Given the local spatial scales of our individual analyses, differences in the habitat preferences of species are unlikely to have caused these association patterns; the patterns observed are most likely the outcome of species interactions. Extending group-living and social-information-use theory to a heterospecific context, we discuss potential behavioral mechanisms that lead to positive interactions among similar species in flocks, as well as ways in which competition costs are reduced. Our findings highlight the need to consider positive interactions along with competition when seeking to explain community assembly.
Resumo:
A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.
Resumo:
Learning from Positive and Unlabelled examples (LPU) has emerged as an important problem in data mining and information retrieval applications. Existing techniques are not ideally suited for real world scenarios where the datasets are linearly inseparable, as they either build linear classifiers or the non-linear classifiers fail to achieve the desired performance. In this work, we propose to extend maximum margin clustering ideas and present an iterative procedure to design a non-linear classifier for LPU. In particular, we build a least squares support vector classifier, suitable for handling this problem due to symmetry of its loss function. Further, we present techniques for appropriately initializing the labels of unlabelled examples and for enforcing the ratio of positive to negative examples while obtaining these labels. Experiments on real-world datasets demonstrate that the non-linear classifier designed using the proposed approach gives significantly better generalization performance than the existing relevant approaches for LPU.