35 resultados para CAD, Aliante, Progettazione, Motorizzazione
Resumo:
In the domain of manual mechanical assembly, expert knowledge is an important means of supporting assembly planning that leads to fewer issues during actual assembly. Knowledge based systems can be used to provide assembly planners with expert knowledge as advice. However, acquisition of knowledge remains a difficult task to automate, while manual acquisition is tedious, time-consuming, and requires engagement of knowledge engineers with specialist knowledge to understand and translate expert knowledge. This paper describes the development, implementation and preliminary evaluation of a method that asks a series of questions to an expert, so as to automatically acquire necessary diagnostic and remedial knowledge as rules for use in a knowledge based system for advising assembly planners diagnose and resolve issues. The method, called a questioning procedure, organizes its questions around an assembly situation which it presents to the expert as the context, and adapts its questions based on the answers it receives from the expert. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Package-board co-design plays a crucial role in determining the performance of high-speed systems. Although there exist several commercial solutions for electromagnetic analysis and verification, lack of Computer Aided Design (CAD) tools for SI aware design and synthesis lead to longer design cycles and non-optimal package-board interconnect geometries. In this work, the functional similarities between package-board design and radio-frequency (RF) imaging are explored. Consequently, qualitative methods common to the imaging community, like Tikhonov Regularization (TR) and Landweber method are applied to solve multi-objective, multi-variable package design problems. In addition, a new hierarchical iterative piecewise linear algorithm is developed as a wrapper over LBP for an efficient solution in the design space.
Resumo:
Zircon has been recognized as the unaltered part of the Earth's history which preserves nearly 4 billion year record of earth's evolution. Zircon preserves igneous and metamorphic processes during its formation and remains unaffected by sedimentary processes and crustal recycling. U-Pb and Lu-Hf in zircon work as geochronometer and geochemical tracer respectively. Zircon provide valuable information about the source composition of the rocks and the intrinsic details of an unseen crust-mantle processes. The world wide data of U-Pb and Lu-Hf isotope systems in zircon reveal crustal evolution through geological history. Moreover, the U-Pb age pattern of zircons show distinct peaks attributed to preservation of crustal rocks or mountain building during supercontinent assembly. The histogram of continental crust preservation shows that nearly one-third of continental crust was formed during the Archean, almost 20% was formed during Paleoproterozoic and 14% in last 400 Ma.
Resumo:
In gross motion of flexible one-dimensional (1D) objects such as cables, ropes, chains, ribbons and hair, the assumption of constant length is realistic and reasonable. The motion of the object also appears more natural if the motion or disturbance given at one end attenuates along the length of the object. In an earlier work, variational calculus was used to derive natural and length-preserving transformation of planar and spatial curves and implemented for flexible 1D objects discretized with a large number of straight segments. This paper proposes a novel idea to reduce computational effort and enable real-time and realistic simulation of the motion of flexible 1D objects. The key idea is to represent the flexible 1D object as a spline and move the underlying control polygon with much smaller number of segments. To preserve the length of the curve to within a prescribed tolerance as the control polygon is moved, the control polygon is adaptively modified by subdivision and merging. New theoretical results relating the length of the curve and the angle between the adjacent segments of the control polygon are derived for quadratic and cubic splines. Depending on the prescribed tolerance on length error, the theoretical results are used to obtain threshold angles for subdivision and merging. Simulation results for arbitrarily chosen planar and spatial curves whose one end is subjected to generic input motions are provided to illustrate the approach. (C) 2016 Elsevier Ltd. All rights reserved.