128 resultados para Bond market
Resumo:
The insertion of phenyl isocyanate into titanium isopropoxide leads to the formation of a dimeric complex [Ti(O ' Pr)(2)(mu-O ' Pr){C6H5N(O ' Pr)CO}](2) (1) which has been structurally characterized. Reaction of titanium isopropoxide with two and more than 2 equiv. of phenyl isocyanate is complicated by competitive, reversible insertion between the titanium carbamate and titanium isopropoxide. The ligand formed by insertion of phenyl isocyanate into the titanium carbamate has been structurally characterized in its protonated form C6H5N{C(O ' Pr)O}C(O)N(H)C6H5 (3aH). Insertion into the carbamate is kinetically favored whereas insertion into isopropoxide gives the thermodynamically favored product. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The spectra of glycine, its addition compounds and other amino-acids exhibit Raman lines in the region from 3250 cm.−1 to 2500 cm.−1 It has been shown that these lines cannot be assigned to N-H...O stretching vibrations, where the N atom has the covalency of three, but to N+-H...O stretching vibration where the N atom has the covalency of four. Using the data obtained with triglycine sulphate which has the largest number of N+-H...O bonds and whose H bond lengths are known, the correlation curve giving the relation between the N+-H...O stretching frequencies and the corresponding H bond lengths has been drawn. Using this correlation curve, the N+-H...O stretching frequencies appearing inα-glycine,γ-glycine, diglycine hydrochloride, diglycine hydrobromide,l-asparagine monohydrate anddl-alanine have been satisfactorily accounted for on the basis of the known hydrogen bond lengths in these substances.
Resumo:
Raman spectra of single crystals of adipic and sebacic acids have been photographed for the first time using λ 2537 excitation. The spectra have been divided into four regions: (a) internal frequencies; (b) summations and overtones; (c) external vibrations; and (d) low-frequency hydrogen bond oscillations. Tentative correlations have been given for all the internal frequencies and summations and overtones. A series of diffuse weak bands observed in the spectra of both these acids in the not, vert, similar2400–2800 cm−1 have been explained as a superposition of O---H frequencies lowered due to hydrogen bond formation over the summations and overtones of fundamentals mainly in the not, vert, similar1000–1500 cm−1 region. Rotatory type of external oscillations of the two formula units of these molecules in their unit cells have been identified at 76, 99, 118 and 165 cm−1 in adipic acid and 66, 95, 117 and 177 cm−1 in the spectrum of sebacic acid. A brief discussion of the low frequency hydrogen bond vibrations in these acids has been made. Making use of the Lippincott—Schroeder potential and assuming a highly anharmonic potential curve for the hydrogen bond, the vibrational frequencies of the bond have been theoretically evaluated. There is very good agreement between these and the experimental values. The results for adipic acid in cm−1 are: 304 (0 → 1), 270 (1 → 2), 241 (2 → 3), 222 (3 → 4) 201 (4 → 5), 183 (5 → 6). In the case of sebacic acid some of the intermediate and higher transitions are absent in the spectrum recorded by the author. From the above data for adipic acid the dissociation energy of the hydrogen bond was evaluated as 5·9 kcal/mole in fair agreement with the values derived from conventional methods.
Resumo:
Effects of non-polar, polar and proton-donating solvents on the n → π* transitions of C=O, C=S, NO2 and N=N groups have been investigated. The shifts of the absorption maxima in non-polar and polar solvents have been related to the electrostatic interactions between solute and solvent molecules, by employing the theory of McRAE. In solvents which can donate protons the solvent shifts are mainly determined by solute-solvent hydrogen bonding. Isobestic points have been found in the n → π* bonds of ethylenetrithio-carbonate in heptane-alcohol and heptane-chloroform solvent systems, indicating the existence of equilibria between the hydrogen bonded and the free species of the solute. Among the different proton-donating solvents studied water produces the largest blue-shifts. The blue-shifts in alcohols decrease in the order 2,2,2-trifluoroethanol, methanol, ethanol, isopropanol and t-butanol, the blue-shift in trifluoroethanol being nearly equal to that in water. This trend is exactly opposite to that for the self-association of alcohols. It is suggested that electron-withdrawing groups not merely decrease the extent of self-association of alcohols, but also increase the ability to donate hydrogen bonds. The approximate hydrogen-bond energies for several donor-acceptor systems have been estimated. In a series of aliphatio ketones and nitro compounds studied, the blue-shifts and consequently the hydrogen bond energies decrease with the decrease in the electron-withdrawing power of the alkyl groups. It is felt that electron-withdrawing groups render the chromophores better proton acceptors, and the alcohols better donors. A linear relationship between n → π* transition frequency and the infrared frequency of ethylenetrithiocarbonate has been found. It is concluded that stabilization of the electronic ground states of solute molecules by electrostatic and/or hydrogen-bond interactions determines the solvent shifts.
Resumo:
A careful comparison of the distribution in the (R, θ)-plane of all NH ... O hydrogen bonds with that for bonds between neutral NH and neutral C=O groups indicated that the latter has a larger mean R and a wider range of θ and that the distribution was also broader than for the average case. Therefore, the potential function developed earlier for an average NH ... O hydrogen bond was modified to suit the peptide case. A three-parameter expression of the form {Mathematical expression}, with △ = R - Rmin, was found to be satisfactory. By comparing the theoretically expected distribution in R and θ with observed data (although limited), the best values were found to be p1 = 25, p3 = - 2 and q1 = 1 × 10-3, with Rmin = 2·95 Å and Vmin = - 4·5 kcal/mole. The procedure for obtaining a smooth transition from Vhb to the non-bonded potential Vnb for large R and θ is described, along with a flow chart useful for programming the formulae. Calculated values of ΔH, the enthalpy of formation of the hydrogen bond, using this function are in reasonable agreement with observation. When the atoms involved in the hydrogen bond occur in a five-membered ring as in the sequence[Figure not available: see fulltext.] a different formula for the potential function is needed, which is of the form Vhb = Vmin +p1△2 +q1x2 where x = θ - 50° for θ ≥ 50°, with p1 = 15, q1 = 0·002, Rmin = 2· Å and Vmin = - 2·5 kcal/mole. © 1971 Indian Academy of Sciences.
Resumo:
Making use of the empirical potential functions for peptide NH .. O bonds, developed in this laboratory, the relative stabilities of the rightand left-handed α-helical structures of poly-L-alanine have been investigated, by calculating their conformational energies (V). The value of Vmin of the right-handed helix (αP) is about - 10.4 kcal/mole, and that of the left-handed helix (αM) is about - 9.6 kcal/mole, showing that the former is lower in energy by 0.8 kcal/mole. The helical parameters of the stable conformation of αP are n ∼ 3.6 and h ∼ 1.5 Å. The hydrogen bond of length 2.85 Å and nonlinearity of about 10° adds about 4.0 kcal/ mole to the stabilising energy of the helix in the minimum enregy region. The energy minimum is not sharply defined, but occurs over a long valley, suggesting that a distribution of conformations (φ{symbol}, ψ) of nearly the same energy may occur for the individual residues in a helix. The experimental data of a-helical fibres of poly-L-alanine are in good agreement with the theoretical results for αP. In the case of proteins, the mean values of (φ{symbol}, ψ) for different helices are distributed, but they invariably occur within the contour for V = Vmin + 2 kcal/mole for αP.
Resumo:
It is currently believed that an unsubstituted axial hydroxyl at the specificity-determining C-4 locus of galactose is indispensable for recognition by galactose/N-acetylgalactosamine-specific lectins. Titration calorimetry demonstrates that 4-methoxygalactose retains binding allegiance to the Moraceae lectin jacalin and the Leguminosae lectin, winged bean (basic) agglutinin (WBA I). The binding reactions were driven by dominant favorable enthalpic contributions and exhibited significant enthalpy-entropy compensation. Proton NMR titration of C-methoxygalactose with jacalin and WBA I resulted in broadening of the sugar resonances without any change in chemical shift. The alpha-and beta-anomers of 4-methoxygalactose were found to be in slow exchange with free and lectin-bound states. Both the anomers experience magnetically equivalent environments at the respective binding sites. The binding constants derived from the dependence of NMR line widths on 4-methoxygalactose concentration agreed well with those obtained from titration calorimetry. The results unequivocally demonstrate that the loci corresponding to the axially oriented C-4 hydroxyl group of galactose within the primary binding site of these lectins exhibit plasticity. These analyses suggest, for the first time, the existence of C-H ... O-type hydrogen-bond(s) in protein-carbohydrate interactions in general and between the C-4 locus of galactose derivative and the lectins jacalin and WBA I in particular.
Resumo:
An unusual C-terminal conformation has been detected in a synthetic decapeptide designed to analyze the stereochemistry of helix termination in polypeptides. The crystal structure of the decapeptide Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-(D)Ala-(D)Leu-Aib-OMe reveals a helical segment spanning residues 1-7 and helix termination by formation of a Schellman motif, generated by (D)Ala(8) adopting the left-handed helical (alpha(L)) conformation. The extended conformation at (D)Leu(9) results in a compact folded structure, stabilized by a potentially strong C-H ... O hydrogen bond between Ala(4) (CH)-H-alpha and (D)Leu(9)CO. The parameters for C-H ... O interaction are Ala(4) (CH)-H-alpha .. O=C (D)Leu(9) distance 3.27 Angstrom C-alpha-H .. O angle 176 degrees, and O .. H-alpha distance 2.29 Angstrom. This structure suggests that insertion of contiguous D-residues may provide a handle for the generation of designed structures containing more than one helical segment folded in a compact manner. (C) 2000 Academic Press.
Resumo:
Allylic alcohols, acetates, carbonates and chlorides can be activated by copper(I) salts towards nucleophilic substitution by carbon nucleophiles under relatively mild conditions.
Resumo:
The 4-31G basis set is used to study the bond length variations as functions of dihedral angels in methanediol. This study is compared with O---C---O bond angle optimization studies by Gorenstein and Kar and the possible reason for bond length shorteing in the trans---trans configuration is analysed.
Resumo:
The critical, and often most difficult, step in structure elucidation of diverse classes of natural peptides is the determination of correct disulfide pairing between multiple cysteine residues. Here, we present a direct mass spectrometric analytical methodology for the determination of disulfide pairing. Protonated peptides, having multiple disulfide bonds, fragmented under collision induced dissociation (CID) conditions and preferentially cleave along the peptide backbone, with occasional disulfide fragmentation either by C-beta-S bond cleavage through H-alpha abstraction to yield dehydroalanine and cysteinepersulfide, or by S-S bond cleavage through H-beta abstraction to yield the thioaldehyde and cysteine. Further fragmentation of the initial set of product ions (MSn) yields third and fourth generation fragment ions, permitting a distinction between the various possible disulfide bonded structures. This approach is illustrated by establishing cysteine pairing patterns in five conotoxins containing two disulfide bonds. The methodology is extended to the Conus araneosus peptides An 446 and Ar1430, two 14 residue sequences containing 3 disulfide bonds. A distinction between 15 possible disulfide pairing schemes becomes possible using direct mass spectral fragmentation of the native peptides together with fragmentation of enzymatically nicked peptides.
Resumo:
XANES in the K-edge of copper in the systems CuO, Cu(OH)2, La2CuO4, Cu3AsO4 and CuOHF have been investigated and transitions have been assigned to the observed structures. The measurements have been used for calculating the first coordination bond distance in the above systems. It is observed that the values so determined agree fairly well with crystallographic values.
Resumo:
A method has been suggested to accurately determine the DBTT of diffusion aluminide bond coats. Micro-tensile testing of free-standing coating samples has been carried out. The DBTT was determined based on the variation of plastic strain-to-fracture with temperature. The positive features of this method over the previously reported techniques are highlighted. (C) 2010 Elsevier B.V. All rights reserved.