141 resultados para Black-Scholes Equation
Resumo:
Abstract is not available.
Resumo:
For the experimental evaluation of the acoustical impedance of a termination by the impedance-tube method at low frequencies, the length of the impedance tube is a problem. In the present paper, the method of exact analysis of standing waves developed by the authors for the stationary medium as well as for mean flow, has been extended for measurement of the acoustical impedance of a termination at low frequencies. The values of the tube attenuation factor and the wave number at the low frequency of interest are established from the experiment conducted, with the given impedance tube, at a higher frequency. Then, exciting the tube at the desired low frequency it is sufficient to measure sound pressure at three differenct locations (not necessarily the minima) in order to evaluate reflection coefficient and hence the impedance of the termination at that frequency.
Resumo:
The transmission-line or the impedance-tube method for the measurement of the acoustic impedance of any termination involves a search for various minima and maxima of pressure. For this purpose, arrangement has to be made for the microphone to travel along the length of the impedance tube, and this complicates the design of the tube considerably. The present paper discusses a method which consists in evaluating the tube attenuation factor at any convenient frequency by making use of measured SPL's at two (or more) fixed locations with a rigid termination, calculating the tube attenuation factor and wave number at the required frequency of interest with or without mean flow (as applicable), and finally evaluating the impedance of the given termination by measuring and using SPL's at three (or more) fixed locations. Thus, the required impedance tube is considerably smaller in length, simpler in design, easier to manufacture, cheaper in cost and more convenient to use. The design of the tube is also discussed. Incidentally, it is also possible to evaluate the impedance at any low frequency without having to use a larger impedance tube.
Resumo:
The accretion disk around a compact object is a nonlinear general relativistic system involving magnetohydrodynamics. Naturally, the question arises whether such a system is chaotic (deterministic) or stochastic (random) which might be related to the associated transport properties whose origin is still not confirmed. Earlier, the black hole system GRS 1915+105 was shown to be low-dimensional chaos in certain temporal classes. However, so far such nonlinear phenomena have not been studied fairly well for neutron stars which are unique for their magnetosphere and kHz quasi-periodic oscillation (QPO). On the other hand, it was argued that the QPO is a result of nonlinear magnetohydrodynamic effects in accretion disks. If a neutron star exhibits chaotic signature, then what is the chaotic/correlation dimension? We analyze RXTE/PCA data of neutron stars Sco X-1 and Cyg X-2, along with the black hole Cyg X-1 and the unknown source Cyg X-3, and show that while Sco X-1 and Cyg X-2 are low dimensional chaotic systems, Cyg X-1 and Cyg X-3 are stochastic sources. Based on our analysis, we argue that Cyg X-3 may be a black hole.
Resumo:
We investigate the transition of a radiatively inefficient phase of a viscous two temperature accreting flow to a cooling dominated phase and vice versa around black holes. Based on a global sub-Keplerian accretion disk model in steady state, including explicit cooling processes self-consistently, we show that general advective accretion flow passes through various phases during its infall towards a black hole. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. Hence the flow governs a much lower electron temperature similar to 10(8) - 10(9.5) K compared to the hot protons of temperature similar to 10(10.2) - 10(11.8) K in the range of the accretion rate in Eddington units 0.01 less than or simiar to (M) over dot less than or similar to 100. Therefore, the solutions may potentially explain the hard X-rays and the gamma-rays emitted from AGNs and X-ray binaries. We finally compare the solutions for two different regimes of viscosity and conclude that a weakly viscous flow is expected to be cooling dominated compared to its highly viscous counterpart which is radiatively inefficient. The flow is successfully able to reproduce the observed minosities of the under-fed AGNs and quasars (e.g. Sgr A*), ultra-luminous X-ray sources (e.g. SS433), as well as the highly luminous AGNs and ultra-luminous quasars (e.g. PKS 0743-67) at different combinations of the mass accretion rate and ratio of specific heats.
Resumo:
We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter 0.2 greater than or similar to alpha greater than or similar to 0.0005, flow behavior varies widely, particularly by means of the size of disk, efficiency of cooling and corresponding temperatures of ions and electrons. We also show that the disk around a rotating black hole is hotter compared to that around a Schwarzschild black hole, rendering a larger difference between ion and electron temperatures in the former case. With all the theoretical solutions in hand, finally we reproduce the observed luminosities (L) of two extreme cases-the under-fed AGNs and quasars (e.g. Sgr A') with L greater than or similar to 10(33) erg/s to ultra-luminous X-ray sources with L similar to 10(41) erg/s, at different combinations of mass accretion rate, ratio of specific heats, Shakura-Sunyaev viscosity parameter and Kerr parameter, and conclude that Sgr A' may be an intermediate spinning black hole.
Resumo:
We investigate viscous two-temperature accretion disc flows around rotating black holes. We describe the global solution of accretion flows with a sub-Keplerian angular momentum profile, by solving the underlying conservation equations including explicit cooling processes self-consistently. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. We focus on the set of solutions for sub-Eddington, Eddington and super-Eddington mass accretion rates around Schwarzschild and Kerr black holes with a Kerr parameter of 0.998. It is found that the flow, during its infall from the Keplerian to sub-Kepleria transition region to the black hole event horizon, passes through various phases of advection: the general advective paradigm to the radiatively inefficient phase, and vice versa. Hence, the flow governs a much lower electron temperature similar to 10(8)-10(9.5) K, in the range of accretion rate in Eddington units 0.01 less than or similar to (M) over dot less than or similar to 100, compared to the hot protons of temperature similar to 10(10.2)-10(11.8) K. Therefore, the solution may potentially explain the hard X-rays and gamma-rays emitted from active galactic nuclei (AGNs) and X-ray binaries. We then compare the solutions for two different regimes of viscosity. We conclude that a weakly viscous flow is expected to be cooling dominated, particularly at the inner region of the disc, compared to its highly viscous counterpart, which is radiatively inefficient. With all the solutions in hand, we finally reproduce the observed luminosities of the underfed AGNs and quasars (e. g. Sgr A*) to ultraluminous X-ray sources (e. g. SS433), at different combinations of input parameters, such as the mass accretion rate and the ratio of specific heats. The set of solutions also predicts appropriately the luminosity observed in highly luminous AGNs and ultraluminous quasars (e. g. PKS 0743-67).
Resumo:
Dimensional analysis using π-theorem is applied to the variables associated with plastic deformation. The dimensionless groups thus obtained are then related and rewritten to obtain the constitutive equation. The constants in the constitutive equation are obtained using published flow stress data for carbon steels. The validity of the constitutive equation is tested for steels with up to 1.54 wt%C at temperatures: 850–1200 °C and strain rates: 6 × 10−6–2 × 10−2 s−1. The calculated flow stress agrees favorably with experimental data.
Resumo:
Barrierless chemical reactions have often been modeled as a Brownian motion on a one-dimensional harmonic potential energy surface with a position-dependent reaction sink or window located near the minimum of the surface. This simple (but highly successful) description leads to a nonexponential survival probability only at small to intermediate times but exponential decay in the long-time limit. However, in several reactive events involving proteins and glasses, the reactions are found to exhibit a strongly nonexponential (power law) decay kinetics even in the long time. In order to address such reactions, here, we introduce a model of barrierless chemical reaction where the motion along the reaction coordinate sustains dispersive diffusion. A complete analytical solution of the model can be obtained only in the frequency domain, but an asymptotic solution is obtained in the limit of long time. In this case, the asymptotic long-time decay of the survival probability is a power law of the Mittag−Leffler functional form. When the barrier height is increased, the decay of the survival probability still remains nonexponential, in contrast to the ordinary Brownian motion case where the rate is given by the Smoluchowski limit of the well-known Kramers' expression. Interestingly, the reaction under dispersive diffusion is shown to exhibit strong dependence on the initial state of the system, thus predicting a strong dependence on the excitation wavelength for photoisomerization reactions in a dispersive medium. The theory also predicts a fractional viscosity dependence of the rate, which is often observed in the reactions occurring in complex environments.
Resumo:
We evaluate the mixed partition function for dyonic BPS black holes using the recently proposed degeneracy formula for the STU model. The result factorizes into the OSV mixed partition function times a proportionality factor. The latter is in agreement with the measure factor that was recently conjectured for a class of N = 2 black holes that contains the STU model.
Resumo:
The mechanism by which outflows and plausible jets are driven from black hole systems still remains observationally elusive. This notwithstanding, several observational evidences and deeper theoretical insights reveal that accretion and outflow/jet are strongly correlated. We model an advective disk-outflow coupled dynamics, incorporating explicitly the vertical flux. Inter-connecting dynamics of outflow andaccretion essentially upholds the conservation laws. We investigate the properties of the disk-outflow surface and its strong dependence on the rotation parameter of the black hole. The energetics of the disk outflow strongly depend on the mass, accretion rate, and spin of the black holes. The model clearly shows that the outflow power extracted from the disk increases strongly with the spin of the black hole, inferring that the power of the observed astrophysical jets has a proportional correspondence with the spin of the central object. In the case of blazars (BL Lacs and flat spectrum radio quasars, FSRQs), most of their emission are believed to be originated from their jets. It is observed that BL Lacs are relatively low luminous than FSRQs. The luminosity might be linked to the power of the jet, which in turn reflects that the nuclear regions of the BL Lac objects have a relatively low spinning black hole compared to that in the case of FSRQs. If extreme gravity is the source that powers strong outflows and jets, then the spin of the black hole, perhaps, might be the fundamental parameter to account for the observed astrophysical processes in an accretion powered system.
Resumo:
Extensive, and collocated measurements of the mass concentrations (M-B) of aerosol black carbon (BC) and (M-T) of composite aerosols were made over the Arabian Sea, tropical Indian Ocean and the Southern Ocean during a trans-continental cruise experiment. Our investigations show that MB remains extremely low(<50 ng m(-3)) and remarkably steady (in space and time) in the Southern Ocean (20 degrees S to 56 degrees S). In contrast, large latitudinal gradients exist north of similar to 20 degrees S; M-B increasing exponentially to reach as high as 2000 ng m(-3) in the Arabian Sea (similar to 8 degrees N). Interestingly, the share of BC showed a distinctly different latitudinal variation, with a peak close to the equator and decreasing on either side. Large fluctuations were seen in M-T over Southern Ocean associated with enhanced production of sea-salt aerosols in response to sea-surface wind speed. These spatio-temporal changes in M-B and its mixing ratio have important implications to regional and global climate.
Resumo:
Benedict-Webb-Rubin equation of state constants for NO, O2, and the equilibrium mixture N2O4 ⇄ 2NO2 are reported.
Resumo:
The association parameter in the diffuswn equaiior, dye fo Wiike one Chong has been interpreted in deferminable properties, thus permitting easily the calculation of the same for unknown systems. The proposed eqyotion a!se holds goods for water as soiute in organic solvenfs. The over-all percentage error remains the sarrse as that of the original equation.