54 resultados para BATH
Resumo:
Electrochemically deposited Cu-Ni black coatings on molybdenum substrate from ethylenediaminetetraacetic acid (EDTA) bath solution are shown to exhibit good optical properties (alpha = 0.94, epsilon = 0.09). The deposit is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Cu is present in metallic and +2 oxidation states in the as-prepared Cu-Ni black coating, whereas Ni2+ as well as Ni3+ species are observed in the same coating. Cu and Ni are observed in their metallic state after 10 and 20 min sputtering. X-ray initiated Auger electron spectroscopy (XAES) of Cu and Ni also agrees well with XPS investigations. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Rammed earth is an energy efficient and low carbon emission alternative for load bearing walls. This paper attempts to examine the influence of clay content and moisture content on the compressive strength of cement stabilised rammed earth (CSRE) through experimental investigations. Compressive strength of CSRE prisms was monitored both in dry and wet (saturated) conditions. Major conclusions of the study are:(a) Optimum clay content for maximum compressive strength is about 16%, (b) the strength of CSRE is sensitive to the moisture content at the time of testing, (c) Strength in saturated condition is less than half of the dry strength and (d) Water absorption (saturated water content) increases as the clay content of the soil mix increases and it is in the range of 12 to 16% for the CRSE prisms with 8% cement.
Resumo:
Electrochemical deposition of Ni-Pd alloy films of various compositions from bath solution containing ethylenediamine (EDA) was carried out to use as anode material for methanol oxidative fuel cell in H2SO4 medium. Electronic absorption spectrum of bath solution containing Ni2+ Pd2+ ions and EDA indicated the formation of a four coordinate square planar metal-ligand complex of both the metal ions. X-ray diffraction (XRD) patterns of the deposited alloy films show an increase in Pd-Ni alloy lattice parameter with increase in Pd content, and indicate the substitution of Pd in the lattice. A nano/ultrafine kind of crystal growth was observed in the alloy film deposited at low current density (2.5 mA cm(-2)). X-ray photoelectron spectroscopic (XPS) studies on the successively sputtered films showed the presence of Ni and Pd in pure metallic states and the surface concentration ratio of Ni to Pd is less than bulk indicating the segregation of Pd on the surface. Electro-catalytic oxidation of methanol in H2SO4 medium is found to be promoted on Ni-Pd electrodeposits. The anodic peak current characteristics to oxidation reaction on Ni-Pd was found typically high when compared to pure nickel and the relative increase in surface area by alloying the Ni by Pd was found to be as much as 300 times. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A steel disc is cut using a single point tool. The coefficient of friction of the nascent cut surface is measured by a spherical steel pin situated in close proximity of the point of cutting. The tool, disc and the friction pin are immersed in an oil in water emulsion bath during the experiment. The purpose of the experiments conducted here is to record the effect of hydrophilic/lypophilic balance (HLB) of the emulsifier on the lubricity experienced in the cutting operation. The more lypophilic emulsifiers were found to give greater lubricity than what is recorded when the emulsifier is more hydrophilic. XPS and FTIR spectroscopy are used to explore the tribofilm generated on the nascent cut surface to indicate a possible rationale for the effect. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as Tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process in terms of installment cost is in between tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-ε turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the mixing process of the bath significantly.
Resumo:
We consider the problem of scheduling semiconductor burn-in operations, where burn-in ovens are modelled as batch processing machines. Most of the studies assume that ready times and due dates of jobs are agreeable (i.e., ri < rj implies di ≤ dj). In many real world applications, the agreeable property assumption does not hold. Therefore, in this paper, scheduling of a single burn-in oven with non-agreeable release times and due dates along with non-identical job sizes as well as non-identical processing of time problem is formulated as a Non-Linear (0-1) Integer Programming optimisation problem. The objective measure of the problem is minimising the maximum completion time (makespan) of all jobs. Due to computational intractability, we have proposed four variants of a two-phase greedy heuristic algorithm. Computational experiments indicate that two out of four proposed algorithms have excellent average performance and also capable of solving any large-scale real life problems with a relatively low computational effort on a Pentium IV computer.
Resumo:
In recent times the demand of ultra-low carbon steel (ULCS) with improved mechanical properties such as good ductility and good workability has been increased as it is used to produce cold-rolled steel sheets for automobiles. For producing ULCS efficiently, it is necessary to improve the productivity of the vacuum degassers such as RH, DH and tank degasser. Recently, it has been claimed that using a new process, called REDA (revolutionary degassing activator), one can achieve the carbon content below 10 ppm in less time. As such, REDA process has not been studied thoroughly in terms of fluid flow and mass transfer which is a necessary precursor to understand and design this process. Therefore, momentum and mass transfer of the process has been studied by solving momentum and species balance equations along with k-epsilon turbulent model in two-dimension (2D) for REDA process. Similarly, computational fluid dynamic studies have been made in 2D for tank and RH degassers to compare them with REDA process. Computational results have been validated with published experimental and theoretical data. It is found that REDA process is the most efficient among all these processes in terms of mixing efficiency. Fluid flow phenomena have been studied in details for REDA process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the melt circulation in the bath significantly.
Resumo:
The ternary alloy Ni-W-P and its WS2 nanocomposite coatings were successfully obtained on low-carbon steel using the electroless plating technique. The sodium tungstate (Na2WO4) concentration in the bath was varied to obtain Ni-W-P deposits containing various Ni and P contents. WS2 composite was obtained with a suitable concentration of Na2WO4 in Ni-P coating. These deposits were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDX) studies. The corrosion behavior was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies in 3.5 wt % NaCl solutions, and the corrosion rates of the coatings for Ni-P, Ni-W-P, and Ni-W-P-WS2 were found to be 2.571 x 10(-5), 8.219 x 10(-7), and 7.986 x 10(-7) g/h, respectively. An increase in the codeposition of alloying metal tungsten (W) enhanced the corrosion resistance and microhardness and changed the structure and morphology of the deposits. Incorporation of WS2 nanoparticles to Ni-W-P alloy coating reduced the coefficient of friction from 0.16 to 0.11 and also helped in improving the corrosion resistance of the coating further.
Resumo:
The Zn-CeO 2 composite coatings through electrodeposition technique were successfully fabricated on mild steel substrate. As a comparison pure zinc coating was also prepared. The concentration of CeO 2 nanoparticles was varied in the electrolytic bath and the composites were electrodeposited both in the presence and absence of cetyltriammonium bromide (CTAB). The performance of the CeO 2 nanoparticles towards the deposition, crystal structure, texture, surface morphology and electrochemical corrosion behavior was studied. For characterizations of the electrodeposits, the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) were used. Both the additives ceria and surfactant polarize the reduction processes and thus influence the deposition process, surface nature and the electrochemical properties. The electrochemical experiments like potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies carried out in 3.5 wt. NaCl solution explicit higher corrosion resistance by CeO 2 incorporated coating in the presence of surfactant. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Quantum coherence can affect the thermodynamics of small quantum systems. Coherences have been shown to affect the power generated by a quantum heat engine (QHE) which is coupled to two thermal photon reservoirs and to an additional cavity mode. We show that the fluctuations of the heat exchanged between the QHE and the reservoirs strongly depend on quantum coherence, especially when the engine operates as a refrigerator, i.e., heat current flows from the cold bath to the hot bath. Intriguingly, we find that the ratio of positive and negative (with respect to the thermodynamic force) fluctuations in the heat current satisfies a universal coherence-independent fluctuation theorem.
Resumo:
Electrodeposition of nickel/barium hexa-aluminate (Ni/BHA) composite coatings has been carried out from a Watt's bath on mild steel substrate. BHA powders with plate habit were synthesized by solution combustion synthesis followed by heat treatment to ensure complete conversion to the hexa-aluminate phase. Heat treated material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with X-ray analysis. The dispersion behaviour and stability of BHA suspensions with cationic and anionic surfactants at room temperature were studied by dynamic light scattering under different pH. The influence of BHA concentration in the electrolytic bath, deposition temperature, pH, current density and duty cycle on particle incorporation in the coatings were studied and conditions for maximum particle incorporation were established. Coatings with a roughness of about 0 center dot 4 mu m were produced by using this technique. Effect of BHA content on microhardness was also investigated. A reasonably good thickness of the coatings was achieved in a given set of conditions.
Resumo:
The problem of semantic interoperability arises while integrating applications in different task domains across the product life cycle. A new shape-function-relationship (SFR) framework is proposed as a taxonomy based on which an ontology is developed. Ontology based on the SFR framework, that captures explicit definition of terminology and knowledge relationships in terms of shape, function and relationship descriptors, offers an attractive approach for solving semantic interoperability issue. Since all instances of terms are based on single taxonomy with a formal classification, mapping of terms requires a simple check on the attributes used in the classification. As a preliminary study, the framework is used to develop ontology of terms used in the aero-engine domain and the ontology is used to resolve the semantic interoperability problem in the integration of design and maintenance. Since the framework allows a single term to have multiple classifications, handling context dependent usage of terms becomes possible. Automating the classification of terms and establishing the completeness of the classification scheme are being addressed presently.
Resumo:
Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn-Ag composite coatings. The Zn-Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, land 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanopartides, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn-Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn-Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. (C) 2013 Elsevier Inc. All rights reserved.