270 resultados para Asymptotic expansions.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active Fiber Composites (AFC) possess desirable characteristics over a wide range of smart structure applications, such as vibration, shape and flow control as well as structural health monitoring. This type of material, capable of collocated actuation and sensing, call be used in smart structures with self-sensing circuits. This paper proposes four novel applications of AFC structures undergoing torsion: sensors and actuators shaped as strips and tubes; and concludes with a preliminary failure analysis. To enable this, a powerful mathematical technique, the Variational Asymptotic Method (VAM) was used to perform cross-sectional analyses of thin generally anisotropic AFC beams. The resulting closed form expressions have been utilized in the applications presented herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a complete asymptotic analysis of a simple model for the evolution of the nocturnal temperature distribution on bare soil in calm clear conditions. The model is based on a simplified flux emissivity scheme that provides a nondiffusive local approximation for estimating longwave radiative cooling near ground. An examination of the various parameters involved shows that the ratio of the characteristic radiative to the diffusive timescale in the problem is of order 10(-3), and can therefore be treated as a small parameter (mu). Certain other plausible approximations and linearization lead to a new equation whose asymptotic solution as mu --> 0 can be written in closed form. Four regimes, consishttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=27192&stage=core#tting of a transient at nominal sunset, a radiative-diffusive boundary ('Ramdas') layer on ground, a boundary layer transient and a radiative outer solution, are identified. The asymptotic solution reproduces all the qualitative features of more exact numerical simulations, including the occurrence of a lifted temperature minimum and its evolution during night, ranging from continuing growth to relatively sudden collapse of the Ramdas layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general asymptotic method based on the work of Krylov-Bogoliubov is developed to obtain the response of nonlinear over damped systems. A second-order system with both roots real is treated first and the method is then extended to higher-order systems. Two illustrative examples show good agreement with results obtained by numerical integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by developments in spacecraft dynamics, the asymptotic behaviour and boundedness of solution of a special class of time varying systems in which each term appears as the sum of a constant and a time varying part, are analysed in this paper. It is not possible to apply standard textbook results to such systems, which are originally in second order. Some of the existing results are reformulated. Four theorems which explore the relations between the asymptotic behaviour/boundedness of the constant coefficient system, obtained by equating the time varying terms to zero, to the corresponding behaviour of the time varying system, are developed. The results show the behaviour of the two systems to be intimately related, provided the solutions of the constant coefficient system approach zero are bounded for large values of time, and the time varying terms are suitably restrained. Two problems are tackled using these theorems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of time variant reliability analysis of existing structures subjected to stationary random dynamic excitations is considered. The study assumes that samples of dynamic response of the structure, under the action of external excitations, have been measured at a set of sparse points on the structure. The utilization of these measurements m in updating reliability models, postulated prior to making any measurements, is considered. This is achieved by using dynamic state estimation methods which combine results from Markov process theory and Bayes' theorem. The uncertainties present in measurements as well as in the postulated model for the structural behaviour are accounted for. The samples of external excitations are taken to emanate from known stochastic models and allowance is made for ability (or lack of it) to measure the applied excitations. The future reliability of the structure is modeled using expected structural response conditioned on all the measurements made. This expected response is shown to have a time varying mean and a random component that can be treated as being weakly stationary. For linear systems, an approximate analytical solution for the problem of reliability model updating is obtained by combining theories of discrete Kalman filter and level crossing statistics. For the case of nonlinear systems, the problem is tackled by combining particle filtering strategies with data based extreme value analysis. In all these studies, the governing stochastic differential equations are discretized using the strong forms of Ito-Taylor's discretization schemes. The possibility of using conditional simulation strategies, when applied external actions are measured, is also considered. The proposed procedures are exemplifiedmby considering the reliability analysis of a few low-dimensional dynamical systems based on synthetically generated measurement data. The performance of the procedures developed is also assessed based on a limited amount of pertinent Monte Carlo simulations. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved that the Riesz means S(R)(delta)f, delta > 0, for the Hermite expansions on R(n), n greater-than-or-equal-to 2, satisfy the uniform estimates \\S(R)(delta)f\\p less-than-or-equal-to C \\f\\p for all radial functions if and only if p lies in the interval 2n/(n + 1 + 2delta) < p < 2n/(n - 1 - 2delta).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymptotically correct analysis is developed for Macro Fiber Composite unit cell using Variational Asymptotic Method (VAM). VAM splits the 3D nonlinear problem into two parts: A 1D nonlinear problem along the length of the fiber and a linear 2D cross-sectional problem. Closed form solutions are obtained for the 2D problem which are in terms of 1D parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze here the occurrence of antiferromagnetic (AFM) correlations in the half-filled Hubbard model in one and two space dimensions using a natural fermionic representation of the model and a newly proposed way of implementing the half-filling constraint. We find that our way of implementing the constraint is capable of enforcing it exactly already at the lowest levels of approximation. We discuss how to develop a systematic adiabatic expansion for the model and how Berry's phase contributions arise quite naturally from the adiabatic expansion. At low temperatures and in the continuum limit the model gets mapped onto an O(3) nonlinear sigma model (NLsigma). A topological, Wess-Zumino term is present in the effective action of the ID NLsigma as expected, while no topological terms are present in 2D. Some specific difficulties that arise in connection with the implementation of an adiabatic expansion scheme within a thermodynamic context are also discussed, and we hint at possible solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, dynamic crack growth along a ductile-brittle interface under anti-plane strain conditions is studied. The ductile solid is taken to obey the J(2) flow theory of plasticity with linear isotropic strain hardening, while the substrate is assumed to exhibit linear elastic behavior. Firstly, the asymptotic near-tip stress and velocity fields are derived. These fields are assumed to be variable-separable with a power singularity in the radial coordinate centered at the crack tip. The effects of crack speed, strain hardening of the ductile phase and mismatch in elastic moduli of the two phases on the singularity exponent and the angular functions are studied. Secondly, full-field finite element analyses of the problem under small-scale yielding conditions are performed. The validity of the asymptotic fields and their range of dominance are determined by comparing them with the results of the full-field finite element analyses. Finally, theoretical predictions are made of the variations of the dynamic fracture toughness with crack velocity. The influence of the bi-material parameters on the above variation is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Shape Memory Alloy (SMA) wire reinforced composite shell structure is analyzed for self-healing characteristic using Variational Asymptotic Method (VAM). SMA behavior is modeled using a onedimensional constitutive model. A pre-notched specimen is loaded longitudinally to simulate crack propagation. The loading process is accompanied by martensitic phase transformation in pre-strained SMA wires, bridging the crack. To heal the composite, uniform heating is required to initiate reverse transformation in the wires and bringing the crack faces back into contact. The pre-strain in the SMA wires used for reinforcement, causes a closure force across the crack during reverse transformation of the wires under heating. The simulation can be useful in design of self-healing composite structures using SMA. Effect of various parameters, like composite and SMA material properties and the geometry of the specimen, on the cracking and self-healing can also be studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generalized Reed-Muller expansions of a switching function are generated using a single Boolean matrix and step-by-step shifting of the principal column.