90 resultados para Arterial-wall regeneration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Test results of 24 reinforced concrete wall panels in one-way in-plane action are presented. The panels were loaded at a small eccentricity to reflect possible eccentric loading in practice. Influences of slenderness ratio, aspect ratio, vertical steel, and horizontal steel on the ultimate load are studied. An empirical equation modifying two existing methods is proposed for the prediction of ultimate load. The modified equation includes the effects of slenderness ratio, amount of vertical steel, and aspect ratio. The results predicted by the proposed modified method and five other available equations are compared with 48 test data. The proposed modified equation is found to be satisfactory and, additionally, includes the effect of aspect ratio which is not present in other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady natural convection flow on a horizontal cone embedded in a saturated porous medium with non-uniform wall temperature/concentration or heat/mass flux and suction/injection has been investigated. Non-similar solutions have been obtained. The nonlinear couple differential equations under boundary layer approximations governing the flow have been numerically solved. The Nusselt and Sherwood numbers are found to depend on the buoyancy forces, suction/injection rates, variation of wall temperature/concentration or heat/mass flux, Lewis number and the non-Darcy parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that thermally stimulated photocurrent measurements provide a simple and effective method of determining the activation energy of thermal regeneration rate of EL2 from the metastable state to the normal state in undoped semi‐insulating GaAs. The thermal regeneration rate r is found to be 2.5×108 exp(−0.26 eV/kT) s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady laminar compressible boundary-layer swirling flow with variable gas properties and mass transfer through a conical nozzle, and a diffuser with a highly cooled wall has been studied. The partial differential equations governing the nonsimilar flow have been transformed to a system of coordinates using modified Lees transformation. The resulting equations are transformed into coordinates having finite ranges by means of a transformation which maps an infinite region into a finite region. The ensuing equations are then solved numerically using an implicit finite-difference scheme. The results indicate that the variation of the density-viscosity product across the boundary layer and mass transfer have strong effect on the skin friction and heat transfer. Separationless flow along the entire length of the diffuser can be obtained by applying suction. The results are found to be in good agreement with those of the local nonsimilarity method but they differ appreciably from those of the local similarity method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuum model based on the critical state theory of soil mechanics is used to generate stress and density profiles, and to compute discharge velocities for the plane flow of cohesionless materials. Two types of yield loci are employed, namely, a yield locus with a corner, and a smooth yield locus. The yield locus with a corner leads to computational difficulties. For the smooth yield locus, results are found to be relatively insensitive to the shape of the yield locus, the location of the upper traction-free surface and the density specified on this surface. This insensitivity arises from the existence of asymptotic stress and density fields, to which the solution tends to converge on moving down the hopper. Numerical and approximate analytical solutions are obtained for these fields and the latter is used to derive an expression for the discharge velocity. This relation predicts discharge velocities to within 13% of the exact (numerical) values. While the assumption of incompressibility has been frequently used in the literature, it is shown here that in some cases, this leads to discharge velocities which are significantly higher than those obtained by the incorporation of density variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow and heat transfer over an upstream moving non-isothermal wall with a parallel free stream have been considered. The magnetic field has been applied in the free stream parallel to the wall and the effect of induced magnetic field has been included in the analysis. The boundary layer equations governing the steady incompressible electrically conducting fluid flow have been solved numerically using a shooting method. This problem is interesting because a solution exists only when the ratio of the wall velocity does not exceed a certain critical value and this critical value depends on the magnetic field and magnetic Prandtl number. Also dual solutions exist for a certain range of wall velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Callus cultures were established from hypocotyls and cotyledons derived from young seedlings of Eucalyptus citriodora. Successful plantlet production from cotyledonary callus was achieved within 6 weeks on Murashige and Skoog's basal medium supplemented with zeatin (1 mg/l) and indoleacetic acid (0.2 mg/l). Leaf and shoot callus obtained from one-year-old plants did not differentiate. Results reported contribute to defining optimal conditions for callus growth and plantlet formation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple expansion chambers, the simplest of the muffler configurations, have very limited practical application due to the presence of periodic troughs in the transmission loss spectrum which drastically lower the overall transmission loss of the muffler. Tuned extended inlet and outlet can be designed to nullify three-fourths of these troughs, making use of the plane wave theory. These cancellations would not occur unless one altered the geometric lengths for the extended tube in order to incorporate the effect of evanescent higher-order modes (multidimensional effect) through end corrections or lumped inertance approximation at the area discontinuities or junctions. End corrections of the extended inlet and outlet have been studied by several researchers. However the effect of wall thickness of the inlet/outlet duct on end correction has not been studied explicitly. This has significant effect on the tuning of an extended inlet/outlet expansion chamber. It is investigated here experimentally as well as numerically (through use of 3-D FEM software) for stationary medium. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.