36 resultados para Angiogenesis Inhibitors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of 04 DNA even at a lower concentration of the stabilizing K+ ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcript of the angiogenic factor vascular endothelial growth factor A (VEGF-A) is subject to a multitude of stimulus-dependent, posttranscriptional regulatory events, consistent with its unusually long 30 untranslated region. We have recently reported translational readthrough of VEGFA mRNA whereby translating ribosomes traverse the canonical stop codon to a conserved, downstream stop codon, generating VEGF-Ax (''x'' for extended), a novel, extended isoform with an additional 22 amino acids appended at the C-terminus. This event is the first vertebrate example of protein-regulated, programmed translational readthrough that generates a protein with a known function. Remarkably, VEGF-Ax exhibits potent antiangiogenic activity, both in vitro and in vivo, thus raising profound clinical implications, particularly with respect to cancer treatment. In this review, we discuss the potential of VEGF-Ax as a therapeutic agent and drug target, as well as its possible role in the failure of, or resistance to, conventional anti-VEGF therapies in many types of cancers. (C) 2015 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NF kappa B pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NF kappa B-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of effective therapies to eradicate persistent, slowly replicating M. tuberculosis (Mtb) represents a significant challenge to controlling the global TB epidemic. To develop such therapies, it is imperative to translate information from metabolome and proteome adaptations of persistent Mtb into the drug discovery screening platforms. To this end, reductive sulfur metabolism is genetically and pharmacologically implicated in survival, pathogenesis, and redox homeostasis of persistent Mtb. Therefore, inhibitors of this pathway are expected to serve as powerful tools in its preclinical and clinical validation as a therapeutic target for eradicating persisters. Here, we establish a first functional HTS platform for identification of APS reductase (APSR) inhibitors, a critical enzyme in the assimilation of sulfate for the biosynthesis of cysteine and other essential sulfur-containing molecules. Our HTS campaign involving 38?350 compounds led to the discovery of three distinct structural classes of APSR inhibitors. A class of bioactive compounds with known pharmacology displayed potent bactericidal activity in wild-type Mtb as well as MDR and XDR clinical isolates. Top compounds showed markedly diminished potency in a conditional Delta APSR mutant, which could be restored by complementation with Mtb APSR. Furthermore, ITC studies on representative compounds provided evidence for direct engagement of the APSR target. Finally, potent APSR inhibitors significantly decreased the cellular levels of key reduced sulfur-containing metabolites and also induced an oxidative shift in mycothiol redox potential of live Mtb, thus providing functional validation of our screening data. In summary, we have identified first-in-class inhibitors of APSR that can serve as molecular probes in unraveling the links between Mtb persistence, antibiotic tolerance, and sulfate assimilation, in addition to their potential therapeutic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging data on cancer suggesting that target-based therapy is promising strategy in cancer treatment. PI3K-AKT pathway is extensively studied in many cancers; several inhibitors target this pathway in different levels. Recent finding on this pathway uncovered the therapeutic applications of PI3K-specific inhibitors; PI3K, AKT, and mTORC broad spectrum inhibitors. Noticeably, class I PI3K isoforms, p110 and p110 catalytic subunits have rational therapeutic application than other isoforms. Therefore, three classes of inhibitors: isoform-specific, dual-specific and broad spectrum were selected for molecular docking and dynamics. First, p110 structure was modelled; active site was analyzed. Then, molecular docking of each class of inhibitors were studied; the docked complexes were further used in 1.2ns molecular dynamics simulation to report the potency of each class of inhibitor. Remarkably, both the studies retained the similar kind of protein ligand interactions. GDC-0941, XL-147 (broad spectrum); TG100-115 (dual-specific); and AS-252424, PIK-294 (isoform-specific) were found to be potential inhibitors of p110 and p110, respectively. In addition to that pharmacokinetic properties are within recommended ranges. Finally, molecular phylogeny revealed that p110 and p110 are evolutionarily divergent; they probably need separate strategies for drug development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ADP-ribose) polymerase (PARP) is a critical nuclear enzyme which safeguards genome stability from genotoxic insults and helps in DNA repair. Inhibition of PARP results in sustained DNA damage in cancer cells. PARP inhibitors are known to play an important role in chemotherapy as single agents in many DNA repair pathway deficient tumor cells or in combination with several other chemotherapeutic agents. In the present study, we synthesize and characterize novel pyridazine derivatives, and evaluate their potential for use as PARP inhibitors. Results show that pyridazine derivatives inhibited the PARP1 enzymatic activity at the nanomolar range and showed anti-proliferative activity in leukemic cells. Interestingly, human leukemic cell line, Nalm6, in which PARP1 and PARP2 expression as well as intrinsic PARP activity are high, showed significant sensitivity for the novel inhibitors compared to other leukemic cells. Among the inhibitors, P10 showed maximum inhibition of intrinsic PARP activity and inhibited cell proliferation in Nalm6 cells. Besides P10 also showed maximum inhibition against purified PARP1 protein, which was comparable to olaparib in our assays. Newly synthesized compounds also showed remarkable DNA trapping ability, which is a signature feature of many PARP inhibitors. Importantly, P10 also induced late S and G2/M arrest in Nalm6 cells, indicating accumulation of DNA damage. Therefore, we identify P10 as a potential PARP inhibitor, which can be developed as a chemotherapeutic agent.