210 resultados para Analytic solutions
Resumo:
Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.
Resumo:
The stability of the steady-state solutions of mode-locking of cw lasers by a fast saturable absorber is imvestigated. It is shown that the solutions are stable if the condition (Ps/Pa) = (2/3) (P0Pa) is satisfied, where (Ps/Pa) is the steady-state la ser power, (P0/Pa) is the power at mode-locking threshold, and Pa is the saturated power of the absorber.
Resumo:
Using the method of infinitesimal transformations, a 6-parameter family of exact solutions describing nonlinear sheared flows with a free surface are found. These solutions are a hybrid between the earlier self-propagating simple wave solutions of Freeman, and decaying solutions of Sachdev. Simple wave solutions are also derived via the method of infinitesimal transformations. Incomplete beta functions seem to characterize these (nonlinear) sheared flows in the absence of critical levels.
Resumo:
Dendrite structures of ice produced on undirectional solidification of ternary and quaternary aqueous solutions have been studied. Upon freezing, solutions containing more than one solute produce plate-shaped dendrites of ice. The spacing between dendrites increase linearly with the distance from the chill surface and the square root of local solidification time (or square root of inverse freezing rate) for any fixed composition. For fixed freezing conditions, the dendrite spacings from multicomponent aqueous solutions were a function of the concentrations and diffusion coefficients of the individual solutes. The dendrite spacing produced by freezing of a solution was changed by the addition of a solute different from those already present. If the main diffusion coefficient of the added solute is higher than that of solutes already present, the dendrite spacing is increased and vice versa. The dendrite spacing in multi-component systems increases with the total solute concentration if the constituent solutes are present in equal amounts. The dendrite spacing obtained on freezing of these dilute multicomponent solutions can be expressed by regression equations of the type Image Full-size image (2K) where L is the dendrite spacing in microns, C1, C2 and C3 are concentrations of individual solutes, Θf is the total freezing time and A1 −A8 are constants. A Yates analysis of the dendrite spacings in a factorial design of quaternary solutions indicates that there are strong interactions between individual solutes in regard to their effect on the dendrite spacings. A mass transport analysis has been used to calculate the interdendritic supersaturation ΔC of the individual solutes, the supercooling in the interdendritic liquid ΔT, and the transverse growth velocity of the dendrites, VT. In ternary solutions if two solutes are present in equal amount the supersaturation of the solute with higher main diffusion coefficient is lower, and vice versa. If a solute with higher main diffusion coefficient is added to a binary solution, the interface growth velocity, the interdendritic supersaturation of the base solute and the interdendritic supercooling increase with the quantity of solute added.
Resumo:
The classic work of Richardson and Gaunt [1 ], has provided an effective means of extrapolating the limiting result in an approximate analysis. From the authors' work on "Bounds for eigenvalues" [2-4] an interesting alternate method has emerged for assessing monotonically convergent approximate solutions by generating close bounds. Whereas further investigation is needed to put this work on sound theoretical foundation, we intend this letter to announce a possibility, which was confirmed by an exhaustive set of examples.
Resumo:
Aqueous solutions of sodium chloride were solidified under the influence of magnetic and electrical fields using two different freezing systems. In the droplet system, small droplets of the solution are introduced in an organic liquid column at −20°C which acts as the heat sink. In the unidirectional freezing system the solutions are poured into a tygon tube mounted on a copper chill, maintained at −70°C, from which the freezing initiates. Application of magnetic fields caused an increase in the spacing and promoted side branching of primary ice dendrites in the droplet freezing system, but had no measurable effect on the dendrites formed in the unidirectional freezing system. The range of electric fields applied in this investigation had no measurable effect on the dendritic structure. Possible interactions between external magnetic and electrical fields have been reviewed and it is suggested that the selective effect of magnetic fields on dendrite spacings in a droplet system could be due to a change in the nucleation behaviour of the solution in the presence of a magnetic field.
Resumo:
In der vorliegenden Arbeit wird die Methode der parametrischen Differentiation angewendet, um ein System nichtlinearer Gleichungen zu lösen, das zwei- und dreidimensionale freie, konvektive Grenzschichströmungen bzw. eine zweidimensionale magnetohydrodynamische Grenzschichtströmung beherrscht. Der Hauptvorteil dieser Methode besteht darin, daß die nichlinearen Gleichungen auf lineare reduziert werden und die Nichtlinearität auf ein System von Gleichungen erster Ordnung beschränkt wird, das, verglichen mit den ursprünglichen Nichtlinearen Gleichungen, viel leichter gelöst werden kann. Ein anderer Vorzug der Methode ist, daß sie es ermöglicht, die Lösung von einer bekannten, zu einem bestimmten Parameterwert gehörigen Lösung aus durch schrittweises Vorgehen die Lösung für den gesamten Parameterbereich zu erhalten. Die mit dieser Methode gewonnenen Ergebnisse stimmen gut mit den entsprechenden, mit anderen numerischen Verfahren erzielten überein.
Resumo:
Ammonium perchlorate-potassium perchlorate mixtures, upon pelletization, form a series of homogeneous solid solutions as manifested by X-ray powder diffractograms. Scanning electron microscopic studies throw light on the mechanism of the solid-solution formation. Solid solutions of ammonium perchlorate-potassium perchlorate have also been obtained by a modified cocrystallization technique. The thermal and combustion behavior of the solid solutions have also been studied, using the DTA technique and the Crawford strand burner.
Resumo:
A method has been presented for constructing non-separable solutions of homogeneous linear partial differential equations of the type F(D, D′)W = 0, where D = ∂/∂x, D′ = ∂/∂y, Image where crs are constants and n stands for the order of the equation. The method has also been extended for equations of the form Φ(D, D′, D″)W = 0, where D = ∂/∂x, D′ = ∂/∂y, D″ = ∂/∂z and Image As illustration, the method has been applied to obtain nonseparable solutions of the two and three dimensional Helmholtz equations.
Application of Artificial Viscosity in Establishing Supercritical Solutions to the Transonic Integra
Resumo:
The nonlinear singular integral equation of transonic flow is examined in the free-stream Mach number range where only solutions with shocks are known to exist. It is shown that, by the addition of an artificial viscosity term to the integral equation, even the direct iterative scheme, with the linear solution as the initial iterate, leads to convergence. Detailed tables indicating how the solution varies with changes in the parameters of the artificial viscosity term are also given. In the best cases (when the artificial viscosity is smallest), the solutions compare well with known results, their characteristic feature being the representation of the shock by steep gradients rather than by abrupt discontinuities. However, 'sharp-shock solutions' have also been obtained by the implementation of a quadratic iterative scheme with the 'artificial viscosity solution' as the initial iterate; the converged solution with a sharp shock is obtained with only a few more iterates. Finally, a review is given of various shock-capturing and shock-fitting schemes for the transonic flow equations in general, and for the transonic integral equation in particular, frequent comparisons being made with the approach of this paper.
Similar solutions for the incompressible laminar boundary layer with pressure gradient in micropolar
Resumo:
This paper presents the similarity solution for the steady incompressible laminar boundary layer flow of a micropolar fluid past an infinite wedge. The governing equations have been solved numerically using fourth orderRunge-Kutta-Gill method. The results indicate the extent to which the velocity and microrotation profiles, and the surface shear stress are influenced by coupling, microrotation, and pressure gradient parameters. The important role played by the standard length of the micropolar fluid in determining the structure of the boundary layer has also been discussed.
Resumo:
Estimates of flexural frequencies of clamped square plates are initially obtained by the modified Bolotin's method. The mode shapes in “each direction” are then determined and the product functions of these mode shapes are used as admissible functions in the Rayleigh-Ritz method. The data for the first twenty eigenvalues in each of the three (four) symmetric groups obtained by the (i) Bolotin, (ii) Rayleigh and (iii) Rayleigh-Ritz methods are reported here. The Rayleigh estimates are found to be much closer to the true eigenvalues than the Bolotin estimates. The present product functions are found to be much superior to the conventional beam eigenmodes as admissible functions in the Rayleigh-Ritz method of analysis.
Resumo:
The special class of quasi-simple wave solutions is studied for the system of partial differential equations governing inviscid acoustic gravity waves. It is shown that these traveling wave solutions do not admit shocks. Periodic solutions are found to exist when there is no propagation in the vertical direction. The solutions for some particular cases are depicted graphically. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
We deal with a single conservation law with discontinuous convex-concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine-Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine-Hugoniot condition by a generalized Rankine-Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L-1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented. (C) 2006 Elsevier B.V. All rights reserved.
Mixed saturated-unsaturated alkyl-chain assemblies: Solid solutions of zinc stearate and zinc oleate
Resumo:
The linear saturated stearic acid and the bent mono-unsaturated oleic acid do not mix and form solid solutions. However, the zinc salts of these acids can. From X-ray diffraction and DSC measurements we show that the layered zinc stearate and zinc oleate salts form a homogeneous solid solution at all composition ratios. The solid solutions exhibit a single melting endotherm, with the melting temperature varying linearly with composition but with the enthalpy change showing a minimum. By monitoring features in the infrared spectra that are characteristic of the global conformation of the hydrocarbon chain, and hence can distinguish between stearate and oleate chains, it is shown that solid solution formation is realized by the introduction of gauche defects in a fraction of the stearate chains that are then no longer linear. This fraction increases with oleate concentration. It has also been possible from the spectroscopic measurements to establish a quantitative relation between molecular conformational order and the thermodynamic enthalpy of melting of the solid solutions.