197 resultados para Amino acids--Separation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-Lysine D-glutamate crystallizes in the monoclinic space group P2(1) with a = 4.902, b = 30.719, c = 9.679 A, beta = 90 degrees and Z = 4. The crystals of L-lysine D-aspartate monohydrate belong to the orthorhombic space group P2(1)2(1)2(1) with a = 5.458, b = 7.152, c = 36.022 A and Z = 4. The structures were solved by the direct methods and refined to R values of 0.125 and 0.040 respectively for 1412 and 1503 observed reflections. The glutamate complex is highly pseudosymmetric. The lysine molecules in it assume a conformation with the side chain staggered between the alpha-amino and the alpha-carboxylate groups. The interactions of the side chain amino groups of lysine in the two complexes are such that they form infinite sequences containing alternating amino and carboxylate groups. The molecular aggregation in the glutamate complex is very similar to that observed in L-arginine D-aspartate and L-arginine D-glutamate trihydrate, with the formation of double layers consisting of both types of molecules. In contrast to the situation in the other three LD complexes, the unlike molecules in L-lysine D-aspartate monohydrate aggregate into alternating layers as in the case of most LL complexes. The arrangement of molecules in the lysine layer is nearly the same as in L-lysine L-aspartate, with head-to-tail sequences as the central feature. The arrangement of aspartate ions in the layers containing them is, however, somewhat unusual. Thus the comparison between the LL and the LD complexes analyzed so far indicates that the reversal of chirality of one of the components in a complex leads to profound changes in molecular aggregation, but these changes could be of more than one type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review briefly surveys the conformational properties of guest omega-amino acid residues when incorporated into host alpha-peptide sequences. The results presented focus primarily on the use of beta- and gamma-residues in alphaomega sequences. The insertion of additional methylene groups into peptide backbones enhances the range of accessible conformations, introducing additional torsional variables. A nomenclature system, which permits ready comparisons between alpha-peptides and hybrid sequences, is defined. Crystal structure determination of hybrid peptides, which adopt helical and beta-hairpin conformations permits the characterization of backbone conformational parameters for beta- and gamma-residues inserted into regular alpha-polypeptide structures. Substituted beta- and gamma-residues are more limited in the range of accessible conformation than their unsubstituted counterparts. The achiral beta,beta-disubstituted gamma-amino acid, gabapentin, is an example of a stereochemically constrained residue in which the torsion angles about the C-beta-C-gamma (theta(1)) and C-alpha-C-beta (theta(2)) bonds are restricted to the gauche conformation. Hybrid sequences permit the design of novel hydrogen bonded rings in peptide structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of glutamine synthetase isolated from the germinated seedlings of Phaseolus aureus was regulated by feedback inhibition by alanine, glycine, histidine, AMP, and ADP. When glutamate was the varied substrate, alanine, histidine, and glycine were partial noncompetitive, competitive, and mixed-type inhibitors, respectively. The type of inhibition by these amino acids was confirmed by fractional inhibition analysis. The adenine nucleotides, AMP and ADP, completely inhibited the enzyme activity and were competitive with respect to ATP. Multiple inhibition analyses revealed the presence of separate and nonexclusive binding sites for the amino acids and mutually exclusive sites for adenine nucleotides. Cumulative inhibition was observed with these end products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystals of dl-arginine hemisuccinate dihydrate (I)(monoclinic; P21/c; a = 5.292, b = 16.296, c = 15.203 Å; α= 92.89°; Z = 4) and l-arginine hemisuccinate hemisuccinic acid monohydrate (II) (triclinic; P1; a = 5.099; b = 10.222, c = 14.626 Å; α= 77.31, β= 89.46, γ= 78.42°; Z = 2) were grown under identical conditions from aqueous solutions of the components in molar proportions. The structures were solved by direct methods and refined to R = 0.068 for 2585 observed reflections in the case of (I) and R = 0.036 for 2154 observed reflections in the case of (11). Two of the three crystallographically independent arginine molecules in the complexes have conformations different from those observed so far in the crystal structures containing arginine. The succinic acid molecules and the succinate ions in the structures are centrosymmetric and planar. The crystal structure of (II) is highly pseudosymmetric. Arginine-succinate interactions in both the complexes involve specific guanidyl-carboxylate interactions. The basic elements of aggregation in both the structures are ribbons made up of alternating arginine dimers and succinate ions. However, the ribbons pack in different ways in the two structures. (II) presents an interesting case in which two ionisation states of the same molecule coexist in a crystal. The two complexes provide a good example of the effect of change in chirality on stoichiometry, conformation, aggregation, and ionisation state in the solid state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CsHllNO2.C9HilNO2, Mr = 282.3, P1, a = 5.245 (1), b = 5.424 (1), c = 14.414 (2) A, a = 97.86 (1), fl = 93-69 (2), y = 70-48 (2) °, V= 356 A 3, Z = 1, O m = 1-32 (2), Dx = 1.32 g cm-3, h(Mo Ka) = 0-7107 A, g = 5-9 cm-1, F(000) = 158, T= 298 K, R=0.035 for 1518 observed reflections with I>2tr(I). The molecules aggregate in double layers, one ayer made up of L-phenylalanine molecules and the other of D-valine molecules. Each double layer is stabilized by interactions involving main-chain atoms of both types of molecules. The interactions include hydrogen bonds which give rise to two head-to-tail sequences. The arrangement of molecules in the complex is almost the same as that in the structure of DL-valine (and DL-leucine and DL-isoleucine) except for the change in the side chain of L molecules. The molecules in crystals containing an equal number of L and O hydrophobic amino-acid molecules thus appear to aggregate in a similar fashion, irrespective of the precise details of the side chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DL-Proline hemisuccinic acid, C5H9NO2.1/2C4H6O4, M(r) = 174.2, P2(1/c) a = 5.254 (1), b = 17.480 (1), c = 10.230 (i) angstrom, beta = 119.60 (6)-degrees Z = 4, D(m) = 1.41 (4), D(x) = 1.42 g cm-3, R = 0.045 for 973 observed reflections. Glycyl-L-histidinium semisuccinate monohydrate, C8H13N4O3+.C4H5O4-.H2O, M(r) = 348.4, P2(1), a = 4.864 (1), b = 17.071 (2), c = 9.397 (1) angstrom, beta = 90.58-degrees, Z = 2, D(m) = 1.45 (1), D(x) = 1.48 g cm-3, R = 0.027 for 1610 observed reflections. Normal amino-acid and dipeptide aggregation patterns are preserved in the structures in spite of the presence of succinic acid/semisuccinate ions. In both the structures, the amino-acid/dipeptide layers stack in such a way that the succinic acid molecules/semisuccinate ions are enclosed in voids created during stacking. Substantial variability in the ionization state and the stoichiometry is observed in amino-acid and peptide complexes of succinic acid. Succinic acid molecules and succinate ions appear to prefer a planar centro-symmetric conformation with the two carboxyl (carboxylate) groups trans with respect to the central C=C bond. Considerable variation is seen in the departure from and modification of normal amino-acid aggregation patterns produced by the presence of succinic acid. Some of the complexes can be described as inclusion compounds with the amino acid/dipeptide as the 'host' and succinic acid/semisuccinate/succinate as the 'guest'. The effects of change in chirality, though very substantial, are not the same in different pairs of complexes involving DL and L isomers of the same amino acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schiff base vanadium(IV) complexes of phenyl esters of the two acidic amino acids, i.e., aspartic and glutamic acid, were synthesized. The phenyl esters of these amino acids were synthesized by conventional method whereas the Schiff base vanadium(IV) complexes were synthesized using microwave irradiation. The complexes were characterized by spectroscopic tools such as IR, 1H NMR, mass (ES), ESR, and UV visible spectroscopy. All the complexes were studied for antibacterial and antifungal activity and found to be moderately active.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann) and 2-substituted malonamic acids 9 (Hofmann), their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate). The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl) products are alpha-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various 1-acyl-2,4,10-trioxaadamantanes were prepared from the corresponding 1-methoxycarbonyl derivatives, via conversion to the N-acylpiperidine derivatives followed by reaction with a Grignard reagent in refluxing THF. These alpha-keto orthoformates were converted to the corresponding imines with 1-(S)-phenethyl amine (TiCl4/Et3N/toluene/reflux), with the Schiff bases being reduced further with NaBH4 (MeOH/0 degrees C) into the corresponding 1-(S)-phenethyl amines (diastereomeric excess 91:9 by NMR). Hydrogenolysis of the phenethyl group (Pd-C/MeOH) finally led to the 1-(aminoalkyl)trioxaadamantanes, which are chiral C-protected alpha-amino acids, in excellent overall yields. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a special, hitherto-unexplored property of (-)-epigallocatechin gallate (EGCG) as a chiral solvating agent for enantiodiscrimination of alpha-amino acids in the polar solvent DMSO. This phenomenon has been investigated by H-1 NMR spectroscopy. The mechanism of the interaction property of EGCG with alpha-amino acids has been understood as arising out of hydrogen-bonded noncovalent interactions, where the -OH groups of two phenyl rings of EGCG play dominant roles. The conversion of the enantiomeric mixture into diastereomers yielded well-resolved peaks for D and L amino acids permitting the precise measurement of enantiomeric composition. Often one encounters complex situations when the spectra are severely overlapped or partially resolved hampering the testing of enantiopurity and the precise measurement of enantiomeric excess (ee). Though higher concentration of EGCG yielded better discrimination, the use of lower concentration being economical, we have exploited an appropriate 2D NMR experiment in overcoming such problems. Thus, in the present study we have successfully demonstrated the utility of the bioflavonoid (-)-EGCG, a natural product as a chiral solvating agent for the discrimination of large number of alpha-amino acids in a polar solvent DMSO. Another significant advantage of this new chiral sensing agent is that it is a natural product and does not require tedious multistep synthesis unlike many other chiral auxiliaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn2+ finger motifs in the CTD. The Zn2+ finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn2+ fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn2+ fingers from the mycobacterial topoI could be associated with Zn2+ export and homeostasis.