98 resultados para Amino acid, dissolved
Resumo:
Two new cyclohexadepsipeptides have been isolated from the fungus Isaria. Fungal growth in solid media yielded hyphal strands from which peptide fractions were readily isolable by organic-solvent extraction. Two novel cyclodepsipeptides, isaridin A and isaridin B, have been isolated by reverse-phase HPLC, and characterized by ESI-MS and 1H-NMR. Single crystals of both peptides have been obtained, and their 3D structures were elucidated by X-ray diffraction. The isaridins contain several unusual amino acid residues. The sequences are cyclo(β-Gly-HyLeu-Pro-Phe-NMeVal-NMePhe) and cyclo(β-Gly-HyLeu-β-MePro-Phe-NMeVal-NMePhe), where NMeVal is N-methylvaline, NMePhe N-methylphenylalanine, and HyLeu hydroxyleucine (=2-hydroxy-4-methylpentanoic acid). The two peptides differ from one another at residue 3, isaridin A having an (S)-proline at this position, while β-methyl-(S)-proline (=(2S,3S)-2,3,4,5-tetrahydro-3-methyl-1H-pyrrole-2-carboxylic acid) is found in isaridin B. The solid-state conformations of both cyclic depsipeptides are characterized by the presence of two cis peptide bonds at HyLeu(2)-Pro(3)/HyLeu(2)-β-MePro(3) and NMeVal(5)-NMePhe(6), respectively. In isaridin A, a strong intramolecular H-bond is observed between Phe(4)CO⋅⋅⋅HNβ-Gly(1), and a similar, but weaker, interaction is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4). In contrast, in isaridin B, only a single intramolecular H-bond is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4
Resumo:
The characteristics of an in vitro polyuridylic acid dependent amino acid incorporating system prepared from germinating macroconidia of Microsporum canis are described. The incorporation of 14C-phenylalanine into polyphenylalanine is dependent on S-30 extract, adenosine triphosphate, magnesium ions and polyuridylic acid. Incorporation is slightly enhanced by yeast transfer ribonucleic acid and pyruvate kinase. The system is highly sensitive to ribonuclease, puromycin and miconazole (an antifungal agent), moderately sensitive to sodium fluoride and much less sensitive to phenethylalcohol, cycloheximide, chloramphenicol and deoxyribonuclease. Cell-free extract from ungerminated conidia has less capacity to synthesize the protein and during germination a marked increase in the protein synthetic activity is observed. The results from experiments wherein ribosomes and S-100 fraction from germinated and ungerminated spores are interchanged, revealed that the defect in the extract from the ungerminated spore is in the ribosomes.
Resumo:
A Schiff base metal complex, [Cu(II)(PLP-DL-tyrosinato)(H2O)].4H2O (PLP = pyridoxal phosphate), with the molecular formula CuC17O13N2H27P has been prepared and characterized by magnetic, spectral, and X-ray structural studies. The compound crystallizes in the triclinic space group P1BAR with a = 8.616 (2) angstrom, b = 11.843 (3) angstrom, c = 12.177 (3) angstrom, alpha = 103.40 (2)degrees, beta = 112.32 (2)degrees, gamma = 76.50 (1)degrees, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares techniques to a final R value of 0.057 for 3132 independent reflections. The coordination geometry around Cu(II) is distorted square pyramidal with phenolic oxygen, imino nitrogen, and carboxylate oxygen from the Schiff base ligand and water oxygen as basal donor atoms. The axial site is occupied by a phosphate oxygen from a neighboring molecule, thus resulting in a one-dimensional polymer. The structure reveals pi-pi interaction of the aromatic side chain of the amino acid with the pyridoxal pi system. A comparative study is made of this complex with similar Schiff base complexes. The variable-temperature magnetic behavior of this compound shows a weak antiferromagnetic interaction.
Resumo:
The torsional potential functions Vt(φ) and Vt(ψ) around single bonds N–Cα and Cα-C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (φ, ψ)-plane with the value of Vtot(φ, ψ), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in l-configuration, are Vt(φ) = – 1.0 cos (φ + 60°); Vt(ψ) = – 0.5 cos (ψ + 60°) – 1.0 cos (2ψ + 30°) – 0.5 cos (3ψ + 30°). The dipeptide energy maps Vtot(φ, ψ) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line ψ = 0°. These functions, derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.
Resumo:
Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.
Resumo:
DL-Proline hemisuccinic acid, C5H9NO2.1/2C4H6O4, M(r) = 174.2, P2(1/c) a = 5.254 (1), b = 17.480 (1), c = 10.230 (i) angstrom, beta = 119.60 (6)-degrees Z = 4, D(m) = 1.41 (4), D(x) = 1.42 g cm-3, R = 0.045 for 973 observed reflections. Glycyl-L-histidinium semisuccinate monohydrate, C8H13N4O3+.C4H5O4-.H2O, M(r) = 348.4, P2(1), a = 4.864 (1), b = 17.071 (2), c = 9.397 (1) angstrom, beta = 90.58-degrees, Z = 2, D(m) = 1.45 (1), D(x) = 1.48 g cm-3, R = 0.027 for 1610 observed reflections. Normal amino-acid and dipeptide aggregation patterns are preserved in the structures in spite of the presence of succinic acid/semisuccinate ions. In both the structures, the amino-acid/dipeptide layers stack in such a way that the succinic acid molecules/semisuccinate ions are enclosed in voids created during stacking. Substantial variability in the ionization state and the stoichiometry is observed in amino-acid and peptide complexes of succinic acid. Succinic acid molecules and succinate ions appear to prefer a planar centro-symmetric conformation with the two carboxyl (carboxylate) groups trans with respect to the central C=C bond. Considerable variation is seen in the departure from and modification of normal amino-acid aggregation patterns produced by the presence of succinic acid. Some of the complexes can be described as inclusion compounds with the amino acid/dipeptide as the 'host' and succinic acid/semisuccinate/succinate as the 'guest'. The effects of change in chirality, though very substantial, are not the same in different pairs of complexes involving DL and L isomers of the same amino acid.
Resumo:
The design of folded structures in peptides containing the higher homologues of alpha-amino acid residues requires the restriction of the range of local conformational choices In alpha-amino acids stereochemically constrained residues like alpha,alpha-dialkylated residue, aminoisobutyric acid (Aib), and D-Proline ((D)Pro) have proved extremely useful in the design of helices and hairpins in short peptides Extending this approach, backbone substitution and cyclization are anticipated to bc useful in generating conformationally constrained beta- and gamma-residues This brief review provides a survey of work on hybrid peptide sequences concerning the conformationally constrained gamma-amino acid residue 1-aminomethyl cyclohexane acetic acid, gabapentin (Gpn) This achiral, beta,beta-disubstituted, gamma-residue strongly favors gauche-gauche conformations about the C-alpha-C-beta (0(2)) and C-alpha-C-gamma (0(1)) bonds, facilitating local folding The Gpn residue can adopt both C-7 (NH1 -> CO1) and C-9 (CO1 (I)<- NH1+I) hydrogen bonds which are analogous to the C-5 and C7 (gamma-turn) conformations at alpha-residues In conjunction with adjacent residues, Gpn may be used in ay and gamma alpha segments to generate C-12 hydrogen bonded conformations which may be considered as expanded analogs of conventional beta-turns The structural characterization of C-12 helices, C-12/C-10 helices with mixed hydrogen bond directionalities and beta-hairpins incorporating Gpn residues at the turn segment is illustrated (C) 2010 Wiley Periodicals, Inc Biopolymers (Pept Sci) 94 733-741 2010
Resumo:
Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective `unlabeling' or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly C-13/N-15 labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {(CO)-C-12 (i) -N-15 (i+1)}-filtered HSQC, which aids in linking the H-1(N)/N-15 resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i - 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to H-2 labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of N-14 at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies.
Resumo:
The conformation of amino acid side chains as observed in well-determined structures of globular proteins has earlier been extensively investigated. In contrast, the structural features of the polypeptide backbone that result from the occurrence of specific amino acids along the polypeptide have not been analysed. In this article, we present the statistically significant features in the backbone geometry that appear to be a consequence of the occurrence of rotamers of different amino acid side chains by analysing 102 well-refined structures that form a random collection of proteins. It is found that the persistence of helical segments around each residue is influenced by the residue type. Several residues exert asymmetrical influence between the carboxyl and amino terminal polypeptide segments. The degree to which secondary structures depart from an average geometry also appears to depend on residue type. These departures are correlated to the corresponding Chou and Fasman parameters of amino acid residues. The frequency distribution of the side chain rotamers is influenced by polypeptide secondary structure. In turn, the rotamer conformation of side chain affects the extension of the secondary structure of the backbone. The strongest correlation is found between the occurrence of g+ conformation and helix propagation on the carboxyl side of many residues.
Resumo:
The circular dichroism, fluorescence, Nuclear Magnetic Resonance and BLM conductance studies indicate that A23187 forms a stable complex with amino acids at low ionophore concentrations (<10(-4)M). However, A23187 prefers to be in a dimeric structure with no significant binding to amino acids, at concentrations higher than 10(-4)M. It was also observed that at lower concentrations, at which the amino acids bind to the ionophore, the affinity for calcium ions was several orders of magnitude lower than that at higher ionophore concentrations. We have also conducted molecular modeling studies to examine the structure of the A23187 dimer and its amino acid complexes. The results of these modeling studies strongly support our experimental results and validate the formation of a hydrogen bonded and energetically stable A23187 dimer and its amino acid complexes.
Resumo:
In attempts to convert an elongator tRNA to an initiator tRNA, we previously generated a mutant elongator methionine tRNA carrying an anticodon sequence change from CAU to CUA along with the two features important for activity of Escherichia coli initiator tRNA in initiation. This mutant tRNA (Mi:2 tRNA) was active in initiation in vivo but only when aminoacylated with methionine by overproduction of methionyl-tRNA synthetase. Here we show that the Mi:2 tRNA is normally aminoacylated in vivo with lysine and that the tRNA aminoacylated with lysine is a very poor substrate for formylation compared with the same tRNA aminoacylated with methionine. By introducing further changes at base pairs 4:69 and 5:68 in the acceptor stem of the Mi:2 tRNA to those found in the E. coli initiator tRNA, we show that change of the U4:A69 base pair to G4:C69 and overproduction of lysyl-tRNA synthetase and methionyl-tRNA transformylase results in partial formylation of the mutant tRNA and activity of the formyllysyl-tRNAs in initiation of protein synthesis. Thus, the G4:C69 base pair contributes toward formylation of the tRNA and protein synthesis in E. coli can be initiated with formyllysine. We also discuss the implications of these and other results on recognition of tRNAs by E. coli lysyl-tRNA synthetase and on competition in cells among aminoacyl-tRNA synthetases.
Resumo:
NSP3, an acidic nonstructural protein, encoded by gene 7 has been implicated as the key player in the assembly of the 11 viral plus-strand RNAs into the early replication intermediates during rotavirus morphogenesis. To date, the sequence or NSP3 from only three animal rotaviruses (SA11, SA114F, and bovine UK) has been determined and that from a human strain has not been reported. To determine the genetic diversity among gene 7 alleles from group A rotaviruses, the nucleotide sequence of the NSP3 gene from 13 strains belonging to nine different G serotypes, from both humans and animals, has been determined. Based on the amino acid sequence identity as well as phylogenetic analysis, NSP3 from group A rotaviruses falls into three evolutionarily related groups, i.e., the SA11 group, the Wa group, and the S2 group. The SA 11/SA114F gene appears to have a distant ancestral origin from that of the others and codes for a polypeptide of 315 amino acids (aa) in length. NSP3 from all other group A rotaviruses is only 313 aa in length because of a 2-amino-acid deletion near the carboxy-terminus, While the SA114F gene has the longest 3' untranslated region (UTR) of 132 nucleotides, that from other strains suffered deletions of varying lengths at two positions downstream of the translational termination codon. In spite of the divergence of the nucleotide (nt) sequence in the protein coding region, a stretch of about 80 nt in the 3' UTR is highly conserved in the NSP3 gene from all the strains. This conserved sequence in the 3' UTR might play an important role in the regulation of expression of the NSP3 gene. (C) 1995 Academic Press, Inc.