41 resultados para Alternative Formulations
Resumo:
The experimental observations of casting titanium in sodium silicate bonded zircon sand mould are presented in this paper. Metal-mould reactions, in general, involved dissolution of oxides in liquid titanium resulting in contamination of the casting. Minimal metal-mould reactions occurred when titanium was cast in zircon sand mould containing about 7.5 wt% of ZrO2. It has been further shown that the metal-mould reaction is considerably reduced if moulds were fired at high temperatures (> 1273K). This ensured elimination of moisture from the mould and also resulted in some beneficial changes in the mould chemistry. The reduction in metal-mould reaction is reflected in the decrease in oxygen and hydrogen contamination and decrease in hardness. Thus microhardness profile and oxygen analysis seems to provide a good index for evaluation of severity of metal-mould reaction. The method has been demonstrated to be satisfactory for casting titanium components.
Resumo:
Thyroxine is a naturally occurring human hormone produced by the thyroid gland. Clinical applications of thyroxine to treat several chronic disorders are limited by poor water solubility and instability under physiological conditions. An inclusion complex of levo-thyroxine (l-thyroxine), the active form of the hormone with gamma cyclodextrin (gamma-CD) has been obtained and studied with the aim of improving oral delivery rather than the injection formulation of the sodium salt. In addition to greater patient acceptability, inclusion complexes often improve aqueous solubility and bioavailability, stability, and reduce toxicity of drugs, thus providing enhanced pharmaceutical formulations. Physicochemical characterization of the inclusion complex was carried out using Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy and proton nuclear magnetic resonance spectroscopy. Intermolecular dipolar interactions for the inclusion complex were also studied using 2 dimensional ROESY experiments. Formation of the inclusion complex between the protons H3 and H5 of cyclodextrin with aromatic protons of thyroxine was confirmed by their dipolar interaction. Molecular modelling was used to understand the basis for the complex formation and predict the formation of other complexes. Interestingly, we found that l-thyroxine forms an inclusion complex only with the larger gamma-CD and not with other available alpha and beta forms.
Resumo:
Chebyshev-inequality-based convex relaxations of Chance-Constrained Programs (CCPs) are shown to be useful for learning classifiers on massive datasets. In particular, an algorithm that integrates efficient clustering procedures and CCP approaches for computing classifiers on large datasets is proposed. The key idea is to identify high density regions or clusters from individual class conditional densities and then use a CCP formulation to learn a classifier on the clusters. The CCP formulation ensures that most of the data points in a cluster are correctly classified by employing a Chebyshev-inequality-based convex relaxation. This relaxation is heavily dependent on the second-order statistics. However, this formulation and in general such relaxations that depend on the second-order moments are susceptible to moment estimation errors. One of the contributions of the paper is to propose several formulations that are robust to such errors. In particular a generic way of making such formulations robust to moment estimation errors is illustrated using two novel confidence sets. An important contribution is to show that when either of the confidence sets is employed, for the special case of a spherical normal distribution of clusters, the robust variant of the formulation can be posed as a second-order cone program. Empirical results show that the robust formulations achieve accuracies comparable to that with true moments, even when moment estimates are erroneous. Results also illustrate the benefits of employing the proposed methodology for robust classification of large-scale datasets.
Resumo:
Nonhomologous DNA end joining (NHEJ) is one of the major double-strand break (DSB) repair pathways in higher eukaryotes. Recently, it has been shown that alternative NHEJ (A-NHEJ) occurs in the absence of classical NHEJ and is implicated in chromosomal translocations leading to cancer. In the present study, we have developed a novel biochemical assay system utilizing DSBs flanked by varying lengths of microhomology to study microhomology-mediated alternative end joining (MMEJ). We show that MMEJ can operate in normal cells, when microhomology is present, irrespective of occurrence of robust classical NHEJ. Length of the microhomology determines the efficiency of MMEJ, 5 nt being obligatory. Using this biochemical approach, we show that products obtained are due to MMEJ, which is dependent on MRE11, NBS1, LIGASE III, XRCC1, FEN1 and PARP1. Thus, we define the enzymatic machinery and microhomology requirements of alternative NHEJ using a well-defined biochemical system.
Resumo:
The atomization characteristics of blends of bioderived camelina hydrogenated renewable jet (HRJ) alternative fuel with conventional aviation kerosene (Jet A-1) discharging into ambient atmospheric air from a dual-orifice atomizer used in aircraft engines are described. The spray tests are conducted in a spray test facility at six different test flow conditions to compare the atomization of alternative fuels with that of Jet A-1. The fuel sprays are characterized in terms of fuel discharge, spray cone angle, drop size distribution, and spray patternation. The measurements of spray drop size distribution are obtained using laser diffraction based Spraytec equipment. The characteristics of fuel discharge and cone angle of alternative fuel sprays do not show any changes from that of Jet A-1 sprays. The characteristics of spray drop size, evaluated in terms of the variation of mean drop size along the spray axis, for the alternative fuel sprays remain unaffected by the variation in fuel properties between the alternative fuels and Jet A-1. The measurements on spray patternation, obtained using a mechanical patternator at a distance 5.1 cm from the atomizer exit, show an enhanced fuel concentration in the vicinity of spray axis region for the alternative fuel sprays discharging from the dual-orifice atomizer.
Resumo:
In this paper, an alternative apriori and aposteriori formulation has been derived for the discrete linear quadratic regulator (DLQR) in a manner analogous to that used in the discrete Kalman filter. It has been shown that the formulation seamlessly fits into the available formulation of the DLQR and the equivalent terms in the existing formulation and the proposed formulation have been identified. Thereafter, the significance of this alternative formulation has been interpreted in terms of the sensitivity of the controller performances to any changes in the states or to changes in the control inputs. The implications of this alternative formulation to adaptive controller tuning have also been discussed.
Resumo:
Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice.
Resumo:
This paper deals with a new approach to study the nonlinear inviscid flow over arbitrary bottom topography. The problem is formulated as a nonlinear boundary value problem which is reduced to a Dirichlet problem using certain transformations. The Dirichlet problem is solved by applying Plemelj-Sokhotski formulae and it is noticed that the solution of the Dirichlet problem depends on the solution of a coupled Fredholm integral equation of the second kind. These integral equations are solved numerically by using a modified method. The free-surface profile which is unknown at the outset is determined. Different kinds of bottom topographies are considered here to study the influence of bottom topography on the free-surface profile. The effects of the Froude number and the arbitrary bottom topography on the free-surface profile are demonstrated in graphical forms for the subcritical flow. Further, the nonlinear results are validated with the results available in the literature and compared with the results obtained by using linear theory. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
We study an s-channel resonance R as a viable candidate to fit the diboson excess reported by ATLAS. We compute the contribution of the similar to 2 TeV resonance R to semileptonic and leptonic final states at the 13 TeV LHC. To explain the absence of an excess in the semileptonic channel, we explore the possibility where the particle R decays to additional light scalars X, X or X, Y. A modified analysis strategy has been proposed to study the three-particle final state of the resonance decay and to identify decay channels of X. Associated production of R with gauge bosons has been studied in detail to identify the production mechanism of R. We construct comprehensive categories for vector and scalar beyond-standard-model particles which may play the role of particles R, X, Y and find alternate channels to fix the new couplings and search for these particles.
Resumo:
This paper evaluates cost and performance tradeoffs of alternative supercritical carbon dioxide (s-CO2) closed-loop Brayton cycle configurations with a concentrated solar heat source. Alternative s-CO2 power cycle configurations include simple, recompression, cascaded, and partial cooling cycles. Results show that the simple closed-loop Brayton cycle yielded the lowest power-block component costs while allowing variable temperature differentials across the s-CO2 heating source, depending on the level of recuperation. Lower temperature differentials led to higher sensible storage costs, but cycle configurations with lower temperature differentials (higher recuperation) yielded higher cycle efficiencies and lower solar collector and receiver costs. The cycles with higher efficiencies (simple recuperated, recompression, and partial cooling) yielded the lowest overall solar and power-block component costs for a prescribed power output.