104 resultados para Algebraic triangulation
Resumo:
In an effort to develop a fully computerized approach for structural synthesis of kinematic chains the steps involved in the method of structural synthesis based on transformation of binary chains [38] have been recast in a format suitable for implementation on a digital computer. The methodology thus evolved has been combined with the algebraic procedures for structural analysis [44] to develop a unified computer program for structural synthesis and analysis of simple jointed kinematic chains with a degree of freedom 0. Applications of this program are presented in the succeeding parts of the paper.
Resumo:
Numerically discretized dynamic optimization problems having active inequality and equality path constraints that along with the dynamics induce locally high index differential algebraic equations often cause the optimizer to fail in convergence or to produce degraded control solutions. In many applications, regularization of the numerically discretized problem in direct transcription schemes by perturbing the high index path constraints helps the optimizer to converge to usefulm control solutions. For complex engineering problems with many constraints it is often difficult to find effective nondegenerat perturbations that produce useful solutions in some neighborhood of the correct solution. In this paper we describe a numerical discretization that regularizes the numerically consistent discretized dynamics and does not perturb the path constraints. For all values of the regularization parameter the discretization remains numerically consistent with the dynamics and the path constraints specified in the, original problem. The regularization is quanti. able in terms of time step size in the mesh and the regularization parameter. For full regularized systems the scheme converges linearly in time step size.The method is illustrated with examples.
Resumo:
Using the link-link incidence matrix to represent a simple-jointed kinematic chain algebraic procedures have been developed to determine its structural characteristics such as the type of freedom of the chain, the number of distinct mechanisms and driving mechanisms that can be derived from the chain. A computer program incorporating these graph theory based procedures has been applied successfully for the structural analysis of several typical chains.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
This paper discusses the consistent regularization property of the generalized α method when applied as an integrator to an initial value high index and singular differential-algebraic equation model of a multibody system. The regularization comes from within the discretization itself and the discretization remains consistent over the range of values the regularization parameter may take. The regularization involves increase of the smallest singular values of the ill-conditioned Jacobian of the discretization and is different from Baumgarte and similar techniques which tend to be inconsistent for poor choice of regularization parameter. This regularization also helps where pre-conditioning the Jacobian by scaling is of limited effect, for example, when the scleronomic constraints contain multiple closed loops or singular configuration or when high index path constraints are present. The feed-forward control in Kane's equation models is additionally considered in the numerical examples to illustrate the effect of regularization. The discretization presented in this work is adopted to the first order DAE system (unlike the original method which is intended for second order systems) for its A-stability and same order of accuracy for positions and velocities.
Resumo:
This paper describes the application of vector spaces over Galois fields, for obtaining a formal description of a picture in the form of a very compact, non-redundant, unique syntactic code. Two different methods of encoding are described. Both these methods consist in identifying the given picture as a matrix (called picture matrix) over a finite field. In the first method, the eigenvalues and eigenvectors of this matrix are obtained. The eigenvector expansion theorem is then used to reconstruct the original matrix. If several of the eigenvalues happen to be zero this scheme results in a considerable compression. In the second method, the picture matrix is reduced to a primitive diagonal form (Hermite canonical form) by elementary row and column transformations. These sequences of elementary transformations constitute a unique and unambiguous syntactic code-called Hermite code—for reconstructing the picture from the primitive diagonal matrix. A good compression of the picture results, if the rank of the matrix is considerably lower than its order. An important aspect of this code is that it preserves the neighbourhood relations in the picture and the primitive remains invariant under translation, rotation, reflection, enlargement and replication. It is also possible to derive the codes for these transformed pictures from the Hermite code of the original picture by simple algebraic manipulation. This code will find extensive applications in picture compression, storage, retrieval, transmission and in designing pattern recognition and artificial intelligence systems.
Resumo:
We explore here the acceleration of convergence of iterative methods for the solution of a class of quasilinear and linear algebraic equations. The specific systems are the finite difference form of the Navier-Stokes equations and the energy equation for recirculating flows. The acceleration procedures considered are: the successive over relaxation scheme; several implicit methods; and a second-order procedure. A new implicit method—the alternating direction line iterative method—is proposed in this paper. The method combines the advantages of the line successive over relaxation and alternating direction implicit methods. The various methods are tested for their computational economy and accuracy on a typical recirculating flow situation. The numerical experiments show that the alternating direction line iterative method is the most economical method of solving the Navier-Stokes equations for all Reynolds numbers in the laminar regime. The usual ADI method is shown to be not so attractive for large Reynolds numbers because of the loss of diagonal dominance. This loss can however be restored by a suitable choice of the relaxation parameter, but at the cost of accuracy. The accuracy of the new procedure is comparable to that of the well-tested successive overrelaxation method and to the available results in the literature. The second-order procedure turns out to be the most efficient method for the solution of the linear energy equation.
Resumo:
The paper deals with a rational approach to the development of general design criteria for non-dissipative vibration isolation systems. The study covers straight-through springmass systems as well as branched ones with dynamic absorbers. Various design options, such as the addition of another spring-mass pair, replacement of an existing system by one with more spring-mass pairs for the same space and material requirements, provision of one or more dynamic absorbers for the desired frequency range, etc., are investigated quantitatively by means of an algebraic algorithm which enables one to write down straightaway the velocity ratio and hence transmissibility of a linear dynamical system in terms of the constituent parameters.
Resumo:
Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.
An FETI-preconditioned conjuerate gradient method for large-scale stochastic finite element problems
Resumo:
In the spectral stochastic finite element method for analyzing an uncertain system. the uncertainty is represented by a set of random variables, and a quantity of Interest such as the system response is considered as a function of these random variables Consequently, the underlying Galerkin projection yields a block system of deterministic equations where the blocks are sparse but coupled. The solution of this algebraic system of equations becomes rapidly challenging when the size of the physical system and/or the level of uncertainty is increased This paper addresses this challenge by presenting a preconditioned conjugate gradient method for such block systems where the preconditioning step is based on the dual-primal finite element tearing and interconnecting method equipped with a Krylov subspace reusage technique for accelerating the iterative solution of systems with multiple and repeated right-hand sides. Preliminary performance results on a Linux Cluster suggest that the proposed Solution method is numerically scalable and demonstrate its potential for making the uncertainty quantification Of realistic systems tractable.
Resumo:
The application of computer-aided inspection integrated with the coordinate measuring machine and laser scanners to inspect manufactured aircraft parts using robust registration of two-point datasets is a subject of active research in computational metrology. This paper presents a novel approach to automated inspection by matching shapes based on the modified iterative closest point (ICP) method to define a criterion for the acceptance or rejection of a part. This procedure improves upon existing methods by doing away with the following, viz., the need for constructing either a tessellated or smooth representation of the inspected part and requirements for an a priori knowledge of approximate registration and correspondence between the points representing the computer-aided design datasets and the part to be inspected. In addition, this procedure establishes a better measure for error between the two matched datasets. The use of localized region-based triangulation is proposed for tracking the error. The approach described improves the convergence of the ICP technique with a dramatic decrease in computational effort. Experimental results obtained by implementing this proposed approach using both synthetic and practical data show that the present method is efficient and robust. This method thereby validates the algorithm, and the examples demonstrate its potential to be used in engineering applications.
Resumo:
By using the algebraic locus of the coupler curve of a PRRP planar linkage, in this paper, a kinematic theory is developed for planar, radially foldable closed-loop linkages. This theory helps derive the previously invented building blocks, which consist of only two inter-connected angulated elements, for planar foldable structures. Furthermore, a special case of a circumferentially actuatable foldable linkage (which is different from the previously known cases) is derived from the theory, A quantitative description of some known and some new properties of planar foldable linkages, including the extent of foldability, shape-preservation of the interior polygons, multi-segmented assemblies and heterogeneous circumferential arrangemants, is also presented. The design equations derived here make the conception of even complex planar radially foldable linkages systematic and straightforward. Representative examples are presented to illustrate the usage of the design equations and the construction of prototypes. The current limitations and some possible extensions of the theory are also noted. (c) 2007, Elsevier Ltd. All ri-hts reserved.
Resumo:
A common trick for designing faster quantum adiabatic algorithms is to apply the adiabaticity condition locally at every instant. However it is often difficult to determine the instantaneous gap between the lowest two eigenvalues, which is an essential ingredient in the adiabaticity condition. In this paper we present a simple linear algebraic technique for obtaining a lower bound on the instantaneous gap even in such a situation. As an illustration, we investigate the adiabatic un-ordered search of van Dam et al. [17] and Roland and Cerf [15] when the non-zero entries of the diagonal final Hamiltonian are perturbed by a polynomial (in log N, where N is the length of the unordered list) amount. We use our technique to derive a bound on the running time of a local adiabatic schedule in terms of the minimum gap between the lowest two eigenvalues.
Resumo:
We investigate the dynamics of peeling of an adhesive tape subjected to a constant pull speed. Due to the constraint between the pull force, peel angle and the peel force, the equations of motion derived earlier fall into the category of differential-algebraic equations (DAE) requiring an appropriate algorithm for its numerical solution. By including the kinetic energy arising from the stretched part of the tape in the Lagrangian, we derive equations of motion that support stick-slip jumps as a natural consequence of the inherent dynamics itself, thus circumventing the need to use any special algorithm. In the low mass limit, these equations reproduce solutions obtained using a differential-algebraic algorithm introduced for the earlier singular equations. We find that mass has a strong influence on the dynamics of the model rendering periodic solutions to chaotic and vice versa. Apart from the rich dynamics, the model reproduces several qualitative features of the different waveforms of the peel force function as also the decreasing nature of force drop magnitudes.