101 resultados para Air-flow Rate
Resumo:
Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.
Resumo:
Two-wheelers (TW) constitute a major proportion of urban traffic in developing countries and therefore their effect on the saturation flow at signalized intersections could be substantial. This paper attempts to study and analyze the effect of two-wheelers on the saturation flow of signalized intersections by collecting data at a few signalized intersections in Bangalore, India. A strong correlation is observed between the measured saturation flow and the proportion of two-wheeler traffic, which suggest that two-wheelers have significant impact and should be considered in the capacity analysis of signalized intersections. In this paper, the effect of two-wheelers on saturation flow rate is incorporated in a previous model by calibrating and introducing a new adjustment factor for two-wheelers. Results show that saturation flow measured using the modified HCM equation is closer to observed saturation flow values.
Resumo:
A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.
Resumo:
This article aims at seeking the universal behavior of propagation rate variation with air superficial velocity (V-s) in a packed bed of a range of biomass particles in reverse downdraft mode while also resolving the differing and conflicting explanations in the literature. Toward this, measurements are made of exit gas composition, gas phase and condensed phase surface temperature (T-g and T-s), and reaction zone thickness for a number of biomass with a range of properties. Based on these data, two regimes are identified: gasificationvolatile oxidation accompanied by char reduction reactions up to 16 +/- 1cm/s of V-s and above this, and char oxidationsimultaneous char oxidation and gas phase combustion. In the gasification regime, the measured T-s is less than T-g; a surface heat balance incorporating a diffusion controlled model for flaming combustion gives and matches with the experimental results to within 5%. In the char oxidation regime, T-g and T-s are nearly equal and match with the equilibrium temperature at that equivalence ratio. Drawing from a recent study of the authors, the ash layer over the oxidizing char particle is shown to play a critical role in regulating the radiation heat transfer to fresh biomass in this regime and is shown to be crucial in explaining the observed propagation behavior. A simple model based on radiation-convection balance that tracks the temperature-time evolution of a fresh biomass particle is shown to support the universal behavior of the experimental data on reaction front propagation rate from earlier literature and the present work for biomass with ash content up to 10% and moisture fraction up to 10%. Upstream radiant heat transfer from the ash-laden hot char modulated by the air flow is shown to be the dominant feature of this model.
Resumo:
We propose a light sheet based imaging flow cytometry technique for simultaneous counting and imaging of cells on a microfluidic platform. Light sheet covers the entire microfluidic channel and thus omits the necessity of flow focusing and point scanning based technology. Another advantage lies in the orthogonal detection geometry that totally cuts-off the incident light, thereby substantially reducing the background in the detection. Compared to the existing state-of-art techniques the proposed technique shows marked improvement. Using fluorescently-coated Saccharomyces cerevisiae cells we have recorded cell counting with throughput as high as 2,090 cells/min in the low flow rate regime and were able to image the individual cells on-the-go. Overall, the proposed system is cost-effective and simple in channel geometry with the advantage of efficient counting in operational regime of low laminar flow. This technique may advance the emerging field of microfluidic based cytometry for applications in nanomedicine and point of care diagnostics. Microsc. Res. Tech. 76:1101-1107, 2013. (c) 2013 Wiley Periodicals, Inc.
Resumo:
Design and development of a piezoelectric polyvinylidene fluoride (PVDF) thin film based nasal sensor to monitor human respiration pattern (RP) from each nostril simultaneously is presented in this paper. Thin film based PVDF nasal sensor is designed in a cantilever beam configuration. Two cantilevers are mounted on a spectacle frame in such a way that the air flow from each nostril impinges on this sensor causing bending of the cantilever beams. Voltage signal produced due to air flow induced dynamic piezoelectric effect produce a respective RP. A group of 23 healthy awake human subjects are studied. The RP in terms of respiratory rate (RR) and Respiratory air-flow changes/alterations obtained from the developed PVDF nasal sensor are compared with RP obtained from respiratory inductance plethysmograph (RIP) device. The mean RR of the developed nasal sensor (19.65 +/- A 4.1) and the RIP (19.57 +/- A 4.1) are found to be almost same (difference not significant, p > 0.05) with the correlation coefficient 0.96, p < 0.0001. It was observed that any change/alterations in the pattern of RIP is followed by same amount of change/alterations in the pattern of PVDF nasal sensor with k = 0.815 indicating strong agreement between the PVDF nasal sensor and RIP respiratory air-flow pattern. The developed sensor is simple in design, non-invasive, patient friendly and hence shows promising routine clinical usage. The preliminary result shows that this new method can have various applications in respiratory monitoring and diagnosis.
Resumo:
Long range, continuous flow of liquid metals occurs upon application of an electric current. Here, we report experimental results elucidating the mechanism of current-induced liquid metal flow, and its dependence on substrate surface condition. It is shown that the observed flow is diffusion-controlled, with the flow-rate depending linearly on applied current density, indicating that it is driven by electromigration. The effective charge number for liquid electromigration, Z*, of several pure metals, such as Al, Bi, Ga, Sn, and Pb, were deduced from the experimental results and were found to be close to the elemental valency. With the exception of liquid Pb, Z* for all liquid metals tested in this study were positive, indicating that: (i) electron wind contributes much less to Z* in liquid metals than in solids, and (ii) with a few exceptions, liquid metals generally flow in the direction of the electric current. On smooth substrates which are wetted well by the liquid metal, flow occurs in a thin, continuous stream. On rough surfaces which are poorly wetted, on the other hand, discrete beads of liquid form, with mass transport between adjacent beads occurring by surface diffusion on the substrate. A rationale for the role of substrate roughness in fostering this observed transition in flow mechanism is presented. (C) 2014 AIP Publishing LLC.
Resumo:
The paper addresses the effect of particle size on tar generation in a fixed bed gasification system. Pyrolysis, a diffusion limited process, depends on the heating rate and the surface area of the particle influencing the release of the volatile fraction leaving behind residual char. The flaming time has been estimated for different biomass samples. It is found that the flaming time for wood flakes is almost one fourth than that of coconut shells for same equivalent diameter fuel samples. The particle density of the coconut shell is more than twice that of wood spheres, and almost four times compared with wood flakes; having a significant influence on the flaming time. The ratio of the particle surface area to that of an equivalent diameter is nearly two times higher for flakes compared with wood pieces. Accounting for the density effect, on normalizing with density of the particle, the flaming rate is double in the case of wood flakes or coconut shells compared with the wood sphere for an equivalent diameter. This is due to increased surface area per unit volume of the particle. Experiments are conducted on estimation of tar content in the raw gas for wood flakes and standard wood pieces. It is observed that the tar level in the raw gas is about 80% higher in the case of wood flakes compared with wood pieces. The analysis suggests that the time for pyrolysis is lower with a higher surface area particle and is subjected to fast pyrolysis process resulting in higher tar fraction with low char yield. Increased residence time with staged air flow has a better control on residence time and lower tar in the raw gas. (C) 2014 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
Soluble lead acid redox flow battery (SLRFB) offers a number of advantages. These advantages can be harnessed after problems associated with buildup of active material on. electrodes (residue) are resolved. A mathematical model is developed to understand residue formation in SLRFB. The model incorporates fluid flow, ion transport, electrode reactions, and non-uniform current distribution on electrode surfaces. A number of limiting cases are studied to conclude that ion transport and electrode reaction on anode simultaneously control battery performance. The model fits the reported cell voltage vs. time profiles very well. During the discharge cycle, the model predicts complete dissolution of deposited material from trailing edge side of the electrodes. With time, the active surface area of electrodes decreases rapidly. The corresponding increase in current density leads to precipitous decrease in cell potential before all the deposited material is dissolved. The successive charge-discharge cycles add to the residue. The model correctly captures the marginal effect of flow rate on cell voltage profiles, and identifies flow rate and flow direction as new variables for controlling residue buildup. Simulations carried out with alternating flow direction and a SLRFB with cylindrical electrodes show improved performance with respect to energy efficiency and residue buildup. (C) 2014 The Electrochemical Society. All rights reserved.
Resumo:
Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.
Resumo:
The atomization characteristics of aviation biofuel discharging from a simplex swirl atomizer into quiescent atmospheric air are studied. The aviation biofuel is a mixture of 90% commercially available camelina-derived biofuel and 10% VonSol-53 (aromatics). The experiments are conducted in a spray test facility at varying fuel flow rate conditions. The measured characteristics include atomizer flow number, spray cone angle, breakup length of liquid sheet, wavelength of undulations on liquid sheet, and spray droplet size. The characteristics of biofuel sheet breakup are deduced from the captured images of biofuel spray. The measurements of spray droplet size distribution are obtained using Spraytec. The experimentally measured characteristics of the biofuel sheet breakup are compared with the predictions obtained from the liquid film breakup model proposed by Senecal et al. (1999). The measurements of wavelength and breakup length of the biofuel sheet discharging from the simplex swirl atomizer agree well with the model predictions. The model-predicted droplet size for the biofuel spray is significantly higher than the experimentally measured Sauter mean diameter (SMD). The spray droplets formed from the liquid sheet breakup undergo secondary atomization until 35-45 mm from the atomizer exit and thereafter the SMD increases downstream due to the combined effect of fuel evaporation and droplet coalescence. A good comparison is observed between the experimentally measured SMD of the biofuel spray and the predictions obtained using the empirical correlation reported in literature for sprays discharging from simplex swirl atomizers. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In the present investigation, two nozzle configurations are used for spray deposition, convergent nozzle (nozzle-A), and convergent nozzle with 2 mm parallel portion attached at its end (nozzle-C) without changing the exit area. First, the conditions for subambient aspiration pressure, i.e., pressure at the tip of the melt delivery tube, are established by varying the protrusion length of the melt delivery tube at different applied gas pressures for both of the nozzles. Using these conditions, spray deposits in a reproducible manner are successfully obtained for 7075 Al alloy. The effect of applied gas pressure, flight distance, and nozzle configuration on various characteristics of spray deposition, viz., yield, melt flow rate, and gas-to-metal ratio, is examined. The over-spray powder is also characterized with respect to powder size distribution, shape, and microstructure. Some of the results are explained with the help of numerical analysis presented in an earlier article.
Resumo:
A microcontroller based, thermal energy meter cum controller (TEMC) suitable for solar thermal systems has been developed. It monitors solar radiation, ambient temperature, fluid flow rate, and temperature of fluid at various locations of the system and computes the energy transfer rate. It also controls the operation of the fluid-circulating pump depending on the temperature difference across the solar collector field. The accuracy of energy measurement is +/-1.5%. The instrument has been tested in a solar water heating system. Its operation became automatic with savings in electrical energy consumption of pump by 30% on cloudy days.
Resumo:
A desalination system is a complex multi energy domain system comprising power/energy flow across several domains such as electrical, thermal, and hydraulic. The dynamic modeling of a desalination system that comprehensively addresses all these multi energy domains is not adequately addressed in the literature. This paper proposes to address the issue of modeling the various energy domains for the case of a single stage flash evaporation desalination system. This paper presents a detailed bond graph modeling of a desalination unit with seamless integration of the power flow across electrical, thermal, and hydraulic domains. The paper further proposes a performance index function that leads to the tracking of the optimal chamber pressure giving the optimal flow rate for a given unit of energy expended. The model has been validated in steady state conditions by simulation and experimentation.
Resumo:
The short duration of the Doppler signal and noise content in it necessitate a validation scheme to be incorporated in the electronic processor used for frequency measurement, There are several different validation schemes that can be employed in period timing devices. A detailed study of the influence of these validation schemes on the measured frequency has been reported here. These studies were carried out by using a combination of a fast A/D converter and computer. Doppler bursts obtained from an air flow were digitised and stored on magnetic discs. Suitable computer programs were then used to simulate the performance of period timing devices with different validation schemes and the frequency of the stored bursts were evaluated. It is found that best results are obtained when the validation scheme enables frequency measurement to be made over a large number of cycles within the burst.