167 resultados para Aerosol, CCN, cloud, climate, hygrocopicity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of heating by black carbon aerosols on Indian summer monsoon has remained inconclusive. Some investigators have predicted that black carbon aerosols reduce monsoon rainfall while others have argued that it will increase monsoon rainfall. These conclusions have been based on local influence of aerosols on the radiative fluxes. The impact of aerosol-like heating in one region on the rainfall in a remote region has not been examined in detail. Here, using an atmospheric general circulation model, it has been shown that remote influence of aerosol-like heating can be as important as local influence on Indian summer monsoon. Precipitation in northern Arabian Sea and north-west Indian region increased by 16% in June to July when aerosol-like heating were present globally. The corresponding increase in precipitation due to presence of aerosol-like heating only over South Asia (local impact) and East Asia (remote impact) were 28 and 13%, respectively. This enhancement in precipitation was due to destabilization of the atmosphere in pre-monsoon season that affected subsequent convection. Moreover, pre-monsoon heating of the lower troposphere changed the circulation substantially that enabled influx of more moisture over certain regions and reduced the moist static stability of the atmosphere. It has been shown that regional aerosol heating can have large impact on the phase of upper tropospheric Rossby wave in pre-monsoon season, which acts as a primary mechanism behind teleconnection and leads to the change in precipitation during monsoon season. These results demonstrate that changes in aerosol in one region can influence the precipitation in a remote region through changes in circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations using Community Atmosphere Model version 3.1 developed at the National Center for Atmospheric Research to investigate the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. To reduce the solar insolation we have prescribed sulfate aerosols in the stratosphere. The radiative forcing in the geoengineering simulations is the net forcing from a doubling of CO2 and the prescribed stratospheric aerosols. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which nearly offsets changes in global mean temperature from a doubling of CO2, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern in our simulations: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution. However, it is important to note that this is an idealized study and thus not all important realistic climate processes are modeled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic aerosols play a crucial role in our environment, climate, and health. Assessment of spatial and temporal variation in anthropogenic aerosols is essential to determine their impact. Aerosols are of natural and anthropogenic origin and together constitute a composite aerosol system. Information about either component needs elimination of the other from the composite aerosol system. In the present work we estimated the anthropogenic aerosol fraction (AF) over the Indian region following two different approaches and inter-compared the estimates. We espouse multi-satellite data analysis and model simulations (using the CHIMERE Chemical transport model) to derive natural aerosol distribution, which was subsequently used to estimate AF over the Indian subcontinent. These two approaches are significantly different from each other. Natural aerosol satellite-derived information was extracted in terms of optical depth while model simulations yielded mass concentration. Anthropogenic aerosol fraction distribution was studied over two periods in 2008: premonsoon (March-May) and winter (November-February) in regard to the known distinct seasonality in aerosol loading and type over the Indian region. Although both techniques have derived the same property, considerable differences were noted in temporal and spatial distribution. Satellite retrieval of AF showed maximum values during the pre-monsoon and summer months while lowest values were observed in winter. On the other hand, model simulations showed the highest concentration of AF in winter and the lowest during pre-monsoon and summer months. Both techniques provided an annual average AF of comparable magnitude (similar to 0.43 +/- 0.06 from the satellite and similar to 0.48 +/- 0.19 from the model). For winter months the model-estimated AF was similar to 0.62 +/- 0.09, significantly higher than that (0.39 +/- 0.05) estimated from the satellite, while during pre-monsoon months satellite-estimated AF was similar to 0.46 +/- 0.06 and the model simulation estimation similar to 0.53 +/- 0.14. Preliminary results from this work indicate that model-simulated results are nearer to the actual variation as compared to satellite estimation in view of general seasonal variation in aerosol concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forests play a critical role in addressing climate change concerns in the broader context of global change and sustainable development. Forests are linked to climate change in three ways. i) Forests are a source of greenhouse gas (GHG) emissions: ii) Forests offer mitigation opportunities to stabilise GHG concentrations: iii) Forests are impacted by climate change. This paper reviews studies related to climate change and forests in India: first, the studies estimating carbon inventory for the Indian land use change and forestry sector (LUCF), then the different models and mitigation potential estimates for the LUCF sector in India. Finally it reviews the studies on the impact of climate change on forest ecosystems in India, identifying the implications for net primary productivity and bio-diversity. The paper highlights data, modelling and research gaps relevant to the GHG inventory, mitigation potential and vulnerability and impact assessments for the forest sector in India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here on a series of laboratory experiments on plumes, undertaken with the object of simulating the effect of the heat release that occurs in clouds on condensation of water vapor. The experimental technique used for this purpose relies on ohmic heating generated in an electrically conducting plume fluid subjected to a suitable alternating voltage across specified axial stations in the plume flow [Bhat et al., 1989]. The present series of experiments achieves a value of the Richardson number that is toward the lower end of the range that characteristics cumulus clouds. It is found that the buoyancy enhancement due to heating disrupts the eddy structures in the flow and reduces the dilution owing to entrainment of ambient fluid that would otherwise have occurred in the central region of the plume. Heating also reduces the spread rate of the plume, but as it accelerates the flow as well, the overall specific mass flux in the plume does not show a very significant change at the heat input employed in the experiment. However, there is some indication that the entrainment rate (proportional to the streamwise derivative of the mass flux) is slightly higher immediately after heat injection and slightly lower farther downstream. The measurements support a previous proposal for a cloud scenario [Bhat and Narasimha, 1996] and demonstrate how fresh insights into certain aspects of the fluid dynamics of clouds may be derived from the experimental techniques employed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accelerated rate of increase in atmospheric CO2 concentration in recent years has revived the idea of stabilizing the global climate through geoengineering schemes. Majority of the proposed geoengineering schemes will attempt to reduce the amount of solar radiation absorbed by our planet. Climate modelling studies of these so called 'sunshade geoengineering schemes' show that global warming from increasing concentrations of CO2 can be mitigated by intentionally manipulating the amount of sunlight absorbed by the climate system. These studies also suggest that the residual changes could be large on regional scales, so that climate change may not be mitigated on a local basis. More recent modelling studies have shown that these schemes could lead to a slow-down in the global hydrological cycle. Other problems such as changes in the terrestrial carbon cycle and ocean acidification remain unsolved by sunshade geoengineering schemes. In this article, I review the proposed geoengineering schemes, results from climate models and discuss why geoengineering is not the best option to deal with climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a multi-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March-May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each ill Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 mu g m(3) over industrial/urban locations to as low as 0.065 mu g m(-3) over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December-February) to pre-monsoon (March-May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with all afternoon low and a nighttime high: (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL), At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May, This is attributed to the increased convective mixing and to the resulting enhanced vertical dispersal of species in the ABL. In addition, large short-period modulations were observed at DEL and HYD, which appeared to be episodic, An examination of this in the light of the MODIS-derived fire count data over India along with the back-trajectory analysis revealed that advection of BC from extensive forest fires and biomass-burning regions upwind were largely responsible for this episodic enhancement in BC at HYD and DEL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ozone Monitoring Instrument (OMI) aboard EOS-Aura and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS-Aqua fly in formation as part of the A-train. Though OMI retrieves aerosol optical depth (AOD) and aerosol absorption, it must assume aerosol layer height. The MODIS cannot retrieve aerosol absorption, but MODIS aerosol retrieval is not sensitive to aerosol layer height and with its smaller pixel size is less affected by subpixel clouds. Here we demonstrate an approach that uses MODIS-retrieved AOD to constrain the OMI retrieval, freeing OMI from making an a priori estimate of aerosol height and allowing a more direct retrieval of aerosol absorption. To predict near-UV optical depths using MODIS data we rely on the spectral curvature of the MODIS-retrieved visible and near-IR spectral AODs. Application of an OMI-MODIS joint retrieval over the north tropical Atlantic shows good agreement between OMI and MODIS-predicted AODs in the UV, which implies that the aerosol height assumed in the OMI-standard algorithm is probably correct. In contrast, over the Arabian Sea, MODIS-predicted AOD deviated from the OMI-standard retrieval, but combined OMI-MODIS retrievals substantially improved information on aerosol layer height (on the basis of validation against airborne lidar measurements). This implies an improvement in the aerosol absorption retrieval, but lack of UV absorption measurements prevents a true validation. Our study demonstrates the potential of multisatellite analysis of A-train data to improve the accuracy of retrieved aerosol products and suggests that a combined OMI-MODIS-CALIPSO retrieval has large potential to further improve assessments of aerosol absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique for computing the spectral and angular (both the zenith and azimuthal) distribution of the solar energy reaching the surface of earth and any other plane in the atmosphere has been developed. Here the computer code LOWTRAN is used for getting the atmospheric transmittances in conjunction with two approximate procedures: one based on the Eddington method and the other on van de Hulst's adding method, for solving the equation of radiative transfer to obtain the diffuse radiation in the cloud-free situation. The aerosol scattering phase functions are approximated by the Hyeney-Greenstein functions. When the equation of radiative transfer is solved using the adding method, the azimuthal and zenith angle dependence of the scattered radiation is evaluated, whereas when the Eddington technique is utilized only the total downward flux of scattered solar radiation is obtained. Results of the diffuse and beam components of solar radiation received on surface of earth compare very well with those computed by other methods such as the more exact calculations using spherical harmonics and when atmospheric conditions corresponding to that prevailing locally in a tropical location (as in India) are used as inputs the computed values agree closely with the measured values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fraunhoffer diffraction analysis of cloud-covered satellite imagery has shown that the diffraction pattern follows approximately cosine squared distribution. The overshooting tops of clouds and the shadows cast by them contribute much to the diffraction of light, particularly in the high-frequency range. Indeed, cloud-covered imagery can be distinguished from cloud-free imagery on the basis of rate of decay of the diffracted light power in the high-frequency band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we discuss the measurements of spectral surface reflectance (rho(s)(lambda)) in the wavelength range 350-2500 nm measured using a spectroradiometer onboard a low-flying aircraft over Bangalore (12.95 degrees N, 77.65 degrees E), an urban site in southern India. The large discrepancies in the retrieval of aerosol propertiesover land by the Moderate-Resolution Imaging Spectroradiometer (MODIS), which could be attributed to the inaccurate estimation of surface reflectance at many sites in India and elsewhere, provided motivation for this paper. The aim of this paper was to verify the surface reflectance relationships assumed by the MODIS aerosol algorithm for the estimation of surface reflectance in the visible channels (470 and 660 nm) from the surface reflectance at 2100 nm for aerosol retrieval over land. The variety of surfaces observed in this paper includes green and dry vegetations, bare land, and urban surfaces. The measuredreflectance data were first corrected for the radiative effects of atmosphere lying between the ground and aircraft using the Second Simulation of Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The corrected surface reflectance in the MODIS's blue (rho(s)(470)), red (rho(s)(660)), and shortwave-infrared (SWIR) channel (rho(s)(2100)) was linearly correlated. We found that the slope of reflectance relationship between 660 and 2100 nm derived from the forward scattering data was 0.53 with an intercept of 0.07, whereas the slope for the relationship between the reflectance at 470 and 660 nm was 0.85. These values are much higher than the slope (similar to 0.49) for either wavelengths assumed by the MODIS aerosol algorithm over this region. The reflectance relationship for the backward scattering data has a slope of 0.39, with an intercept of 0.08 for 660 nm, and 0.65, with an intercept of 0.08 for 470 nm. The large values of the intercept (which is very small in the MODIS reflectance relationships) result in larger values of absolute surface reflectance in the visible channels. The discrepancy between the measured and assumed surface reflectances could lead to error in the aerosol retrieval. The reflectance ratio (rho(s)(660)/rho(s)(2100)) showed a clear dependence on the N D V I-SWIR where the ratio increased from 0.5 to 1 with an increase in N V I-SWIR from 0 to 0.5. The high correlation between the reflectance at SWIR wavelengths (2100, 1640, and 1240 nm) indicated an opportunity to derive the surface reflectance and, possibly, aerosol properties at these wavelengths. We need more experiments to characterize the surface reflectance and associated inhomogeneity of land surfaces, which play a critical role in the remote sensing of aerosols over land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation is presented of the daily variation of the maximum cloud zone (MCZ) and the 7W mb trough in the Northern Hemisphere over the Indian longitudes 70–90°E during April–October for 1973–77. It is found that during June–September there are two favorable locations for a MCZ over these longitudes–on a majority of days the MCZ is present in the monsoon zone north of 15°N, and often a secondary MCZ occurs in the equatorial region (0–10°N). The monsoon MCZ gets established by northward movement of the MCZ occurring over the equatorial Indian ocean in April and May. The secondary MCZ appears intermittently, and is characterized by long spells of persistence only when the monsoon MCZ is absent. In each of the seasons studied, the MCZ temporarily disappeared from the mean summer monsoon location (15–28°N) about four weeks after it was established near the beginning of July. It is reestablished by the northward movement of the secondary MCZ, which becomes active during the absence of the monsoon MCZ, in a manner strikingly similar to that observed in the spring to summer transition. A break in monsoon conditions prevails just prior to the temporary disappearance of the monsoon MCZ. Thus we conclude that the monsoon MCZ cannot survive for longer than a month without reestablishment by the secondary MCZ. Possible underlying mechanisms are also discussed.