256 resultados para Accuracy rate
Resumo:
Abstract is not available.
Resumo:
A rate equation is developed for the liquid-phase oxidation of propionaldehyde with oxygen in the presence of manganese propionate catalyst in a sparged reactor. The equation takes into account diffusional limitations based on Brian's solution for mass transfer accompanied by a pseudo m-. nth-order reaction. Sauter-mean bubble diameter, gas holdup, interfacial area, and bubble rise velocity are measured, and rates of mass transfer within the gas phase and across the gas-liquid interface are computed. Statistically designed experiments show the adequacy of the equation. The oxidation reaction is zero order with respect to oxygen concentration, 3/2 order with respect to aldehyde concentration, and order with respect to catalyst concentration. The activation energy is 12.1 kcal/g mole.
Resumo:
In this paper, we present the design and characterization of a vibratory yaw rate MEMS sensor that uses in-plane motion for both actuation and sensing. The design criterion for the rate sensor is based on a high sensitivity and low bandwidth. The required sensitivity of the yawrate sensor is attained by using the inplane motion in which the dominant damping mechanism is the fluid loss due to slide film damping i.e. two-three orders of magnitude less than the squeeze-film damping in other rate sensors with out-of-plane motion. The low bandwidth is achieved by matching the drive and the sense mode frequencies. Based on these factors, the yaw rate sensor is designed and finally realized using surface micromachining. The inplane motion of the sensor is experimentally characterized to determine the sense and the drive mode frequencies, and corresponding damping ratios. It is found that the experimental results match well with the numerical and the analytical models with less than 5% error in frequencies measurements. The measured quality factor of the sensor is approximately 467, which is two orders of magnitude higher than that for a similar rate sensor with out-of-plane sense direction.
Resumo:
A vibration isolator is described which incorporates a near-zero-spring-rate device within its operating range. The device is an assembly of a vertical spring in parallel with two inclined springs. A low spring rate is achieved by combining the equivalent stiffness in the vertical direction of the inclined springs with the stiffness of the vertical central spring. It is shown that there is a relation between the geometry and the stiffness of the individual springs that results in a low spring rate. Computer simulation studies of a single-degree-of-freedom model for harmonic base input show that the performance of the proposed scheme is superior to that of the passive schemes with linear springs and skyhook damping configuration. The response curves show that, for small to large amplitudes of base disturbance, the system goes into resonance at low frequencies of excitation. Thus, it is possible to achieve very good isolation over a wide low-frequency band. Also, the damper force requirements for the proposed scheme are much lower than for the damper force of a skyhook configuration or a conventional linear spring with a semi-active damper.
Resumo:
It has long been argued that better timing precision allowed by satellites like Rossi X-ray Timing Explorer (RXTE) will allow us to measure the orbital eccentricity and the angle of periastron of some of the bright persistent high-mass X-ray binaries (HMXBs) and hence a possible measurement of apsidal motion in these system. Measuring the rate of apsidal motion allows one to estimate the apsidal motion constant of the mass losing companion star and hence allows for the direct testing of the stellar structure models for these giant stars present in the HMXBs. In the present paper, we use the archival RXTE data of two bright persistent sources, namely Cen X-3 and SMC X-1, to measure the very small orbital eccentricity and the angle of periastron. We find that the small variations in the pulse profiles of these sources, rather than the intrinsic time resolution provided by RXTE, limit the accuracy with which we can measure arrival time of the pulses from these sources. This influences the accuracy with which one can measure the orbital parameters, especially the very small eccentricity and the angle of periastron in these sources. The observations of SMC X-1 in the year 2000 were taken during the high-flux state of the source and we could determine the orbital eccentricity and omega using this data set.
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
Resumo:
In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.
Resumo:
In secondary steelmaking, the enhancement of the reaction rate in the low carbon period during the decarburization of steel is considered the most effective method to produce ultralow carbon steel. In a previous study, it was revealed that the surface reaction is dominant during the final stage of the actual refining process. In order to improve the surface reaction rate, it is necessary to enlarge the reaction region, which is usually achieved by increasing the plume eye area. In this study, water model experiments were carried out to estimate the influence of bottom stirring conditions on the gas-liquid reaction rate; for this purpose, the deoxidation rate during the bottom bubbling process was measured. Five types of nozzle configurations were used to study the effect of the plume eye area on the reaction rate at various gas flow rates. The results reveal that the surface reaction rate is influenced by the gas flow rate and the plume eye area. An empirical correlation was developed for the reaction rate and the plume eye area. This correlation was applied to estimate the gas-liquid reaction rate mat the bath surface.
Resumo:
In this paper, an achievable rate region for the three-user discrete memoryless interference channel with asymmetric transmitter cooperation is derived. The three-user channel facilitates different ways of message sharing between the transmitters. We introduce a manner of noncausal (genie aided) unidirectional message-sharing, which we term cumulative message sharing. We consider receivers with predetermined decoding capabilities, and define a cognitive interference channel. We then derive an achievable rate region for this channel by employing a coding scheme which is a combination of superposition and Gel'fand-Pinsker coding techniques.
Resumo:
Experiments are carried out with air as the test gas to obtain the surface convective heating rate on a missile shaped body flying at hypersonic speeds. The effect of fins on the surface heating rates of missile frustum is also investigated. The tests are performed in a hypersonic shock tunnel at stagnation enthalpy of 2 MJ/kg and zero degree angle of attack. The experiments are conducted at flow Mach number of 5.75 and 8 with an effective test time of 1 ms. The measured stagnation-point heat-transfer data compares well with the theoretical value estimated using Fay and Riddell expression. The measured heat-transfer rate with fin configuration is slightly higher than that of model without fin. The normalized values of experimentally measured heat transfer rate and Stanton number compare well with the numerically estimated results. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper describes an approach based on Zernike moments and Delaunay triangulation for localization of hand-written text in machine printed text documents. The Zernike moments of the image are first evaluated and we classify the text as hand-written using the nearest neighbor classifier. These features are independent of size, slant, orientation, translation and other variations in handwritten text. We then use Delaunay triangulation to reclassify the misclassified text regions. When imposing Delaunay triangulation on the centroid points of the connected components, we extract features based on the triangles and reclassify the text. We remove the noise components in the document as part of the preprocessing step so this method works well on noisy documents. The success rate of the method is found to be 86%. Also for specific hand-written elements such as signatures or similar text the accuracy is found to be even higher at 93%.
Resumo:
Space-time block codes (STBCs) that are single-symbol decodable (SSD) in a co-located multiple antenna setting need not be SSD in a distributed cooperative communication setting. A relay network with N relays and a single source-destination pair is called a partially-coherent relay channel (PCRC) if the destination has perfect channel state information (CSI) of an the channels and the relays have only the phase information of the source-to-relay channels. In our earlier work, we had derived a set of necessary and sufficient conditions for a distributed STBC (DSTBC) to be SSD for a PCRC. Using these conditions, in this paper we show that the possibility of channel phase compensation operation at the relay nodes using partial CSI at the relays increases the possible rate of SSD DSTBCs from 2/N when the relays do not have CSI to 1/2, which is independent of N. We also show that when a DSTBC is SSD for a PCRC, then arbitrary coordinate interleaving of the in-phase and quadrature-phase components of the variables does not disturb its SSD property. Using this property we are able to construct codes that are SSD and have higher rate than 2/N but giving full diversity only for signal constellations satisfying certain conditions.
Resumo:
Structural relaxation behavior of a rapidly quenched (RQ) and a slowly cooled Pd40Cu30Ni10P20 metallic glass was investigated and compared. Differential scanning calorimetry was employed to monitor the relaxation enthalpies at the glass transition temperature, T-g , and the Kolrausch-Williams-Watts (KWW) stretched exponential function was used to describe its variation with annealing time. It was found that the rate of enthalpy recovery is higher in the ribbon, implying that the bulk is more resistant to relaxation at low temperatures of annealing. This was attributed to the possibility of cooling rate affecting the locations where the glasses get trapped within the potential energy landscape. The RQ process traps a larger amount of free volume, resulting in higher fragility, and in turn relaxes at the slightest thermal excitation (annealing). The slowly cooled bulk metallic glass (BMG), on the other hand, entraps lower free volume and has more short-range ordering, hence requiring a large amount of perturbation to access lower energy basins.
Resumo:
Space-time block codes (STBCs) obtained from non-square complex orthogonal designs are bandwidth efficient compared to those from square real/complex orthogonal designs for colocated coherent MIMO systems and has other applications in (i) non-coherent MIMO systems with non-differential detection, (ii) Space-Time-Frequency codes for MIMO-OFDM systems and (iii) distributed space-time coding for relay channels. Liang (IEEE Trans. Inform. Theory, 2003) has constructed maximal rate non-square designs for any number of antennas, with rates given by [(a+1)/(2a)] when number of transmit antennas is 2a-1 or 2a. However, these designs have large delays. When large number of antennas are considered this rate is close to 1/2. Tarokh et al (IEEE Trans. Inform. Theory, 1999) have constructed rate 1/2 non-square CODs using the rate-1 real orthogonal designs for any number of antennas, where the decoding delay of these codes is less compared to the codes constructed by Liang for number of transmit antennas more than 5. In this paper, we construct a class of rate-1/2 codes for arbitrary number of antennas where the decoding delay is reduced by 50% when compared with the rate-1/2 codes given by Tarokh et al. It is also shown that even though scaling the variables helps to lower the delay it can not be used to increase the rate.