154 resultados para ANTIBODY RECOGNITION
Resumo:
We are addressing the novel problem of jointly evaluating multiple speech patterns for automatic speech recognition and training. We propose solutions based on both the non-parametric dynamic time warping (DTW) algorithm, and the parametric hidden Markov model (HMM). We show that a hybrid approach is quite effective for the application of noisy speech recognition. We extend the concept to HMM training wherein some patterns may be noisy or distorted. Utilizing the concept of ``virtual pattern'' developed for joint evaluation, we propose selective iterative training of HMMs. Evaluating these algorithms for burst/transient noisy speech and isolated word recognition, significant improvement in recognition accuracy is obtained using the new algorithms over those which do not utilize the joint evaluation strategy.
Resumo:
We have previously reported that Lyt(2+) cytotoxic T lymphocytes (CTL) can be raised against Japanese encephalitis virus (JEV) in BALB/c mice. In order to confirm the presence of H-2K(d)-restricted CTL and to examine their cross-recognition of West Wile virus (WNV), we tested the capacity of anti-JEV CTL to lyse uninfected syngeneic target cells that were pulsed with synthetic peptides. The sequence of the synthetic peptides was predicted based upon the H-2K(d) binding consensus motif. We show here that preincubation of uninfected syngeneic targets (P388D1) with JEV NS1- and NS3-derived peptides [NS1 (891-899) and NS3 (1804-1812)], but not with JEV NS5-derived peptide [NS5 (3370-3378)], partially sensitized them for lysis by polyclonal anti-JEV CTL. These results indicate the CTL recognition of NS1- and NS3-derived peptides of JEV.
Resumo:
Background: The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the C alpha atoms which are modeled with modest accuracy. Methodology/Principal Findings: In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of C alpha atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of C alpha. We extend the method further to recognize potential protein-protein interface residues. Conclusion/Significance: Our approach to identify buried and exposed residues solely from the positions of C alpha atoms resulted in an accuracy of 84%, sensitivity of 83-89% and specificity of 67-94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70-96% and specificity of 58-94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from C alpha positions and all-atom models suggested that, recognition of interfacial residues using C alpha atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only C alpha positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly.
Resumo:
The incorporation of DNA into nucleosomes and higher-order forms of chromatin in vivo creates difficulties with respect to its accessibility for cellular functions such as transcription, replication, repair and recombination. To understand the role of chromatin structure in the process of homologous recombination, we have studied the interaction of nucleoprotein filaments, comprised of RecA protein and ssDNA, with minichromosomes. Using this paradigm, we have addressed how chromatin structure affects the search for homologous DNA sequences, and attempted to distinguish between two mutually exclusive models of DNA-DNA pairing mechanisms. Paradoxically, we found that the search for homologous sequences, as monitored by unwinding of homologous or heterologous duplex DNA, was facilitated by nucleosomes, with no discernible effect on homologous pairing. More importantly, unwinding of minichromosomes required the interaction of nucleoprotein filaments and led to the accumulation of circular duplex DNA sensitive to nuclease P1. Competition experiments indicated that chromatin templates and naked DNA served as equally efficient targets for homologous pairing. These and other findings suggest that nucleosomes do not impede but rather facilitate the search for homologous sequences and establish, in accordance with one proposed model, that unwinding of duplex DNA precedes alignment of homologous sequences at the level of chromatin. The potential application of this model to investigate the role of chromosomal proteins in the alignment of homologous sequences in the context of cellular recombination is considered.
Resumo:
CD4+ and gamma delta T cells are activated readily by Mycobacterium tuberculosis. To examine their role in the human immune response to M. tuberculosis, CD4+ and gamma delta T cells from healthy tuberculin-positive donor were studied for patterns of Ag recognition, cytotoxicity, and cytokine production in response to M. tuberculosis-infected mononuclear phagocytes. Both T cell subsets responded to intact M. tuberculosis and its cytosolic Ags. However, CD4+ and gamma delta T cells differed in the range of cytosolic Ags recognized: reactivity to a wide m.w. range of Ags for CD4+ T cells, and a restricted pattern for gamma delta T cells, with dominance of Ags of 10 to 15 kDa. Both T cell subsets were equally cytotoxic for M. tuberculosis-infected monocytes. Furthermore, both CD4+ and gamma delta T cells produced large amounts of IFN-gamma: mean pg/ml of IFN-gamma in supernatants was 2458 +/- 213 for CD4+ and 2349 +/- 245 for gamma delta T cells. By filter-spot ELISA (ELISPOT), the frequency of IFN-gamma-secreting gamma delta T cells was one-half of that of CD4+ T cells in response to M. tuberculosis, suggesting that gamma delta T cells on a per cell basis were more efficient producers of IFN-gamma than CD4+ T cells. In contrast, CD4+ T cells produced more IL-2 than gamma delta T cells, which correlated with diminished T cell proliferation of gamma delta T cells compared with CD4+ T cells. These results indicate that CD4+ and gamma delta T cell subsets have similar effector functions (cytotoxicity, IFN-gamma production) in response to M. tuberculosis-infected macrophages, despite differences in the Ags recognized, IL-2 production, and efficiency of IFN-gamma production.
Resumo:
Inosine 5' monophosphate dehydrogenase (IMPDH II) is a key enzyme involved in the de novo biosynthesis pathway of purine nucleotides and is also considered to be an excellent target for cancer inhibitor design. The conserve R 322 residue (in human) is thought to play some role in the recognition of inhibitor and cofactor through the catalytic D 364 and N 303. The 15 ns simulation and the water dynamics of the three different PDB structures (1B3O, 1NF7, and 1NFB) of human IMPDH by CHARMM force field have clearly indicated the involvement of three conserved water molecules (W-L, W-M, and W-C) in the recognition of catalytic residues (R 322, D 364, and N 303) to inhibitor and cofactor. Both the guanidine nitrogen atoms (NH1 and NH 2) of the R 322 have anchored the di- and mono-nucleotide (cofactor and inhibitor) binding domains via the conserved W-C and W-L water molecules. Another conserved water molecule W-M seems to bridge the two domains including the R 322 and also the W-C and W-L through seven centers H-bonding coordination. The conserved water molecular triad (W-C - W-M - W-L) in the protein complex may thought to play some important role in the recognition of inhibitor and cofactor to the protein through R 322 residue.
Resumo:
The relay hypothesis [R. Nayak, S. Mitra-Kaushik, M.S. Shaila, Perpetuation of immunological memory: a relay hypothesis, Immunology 102 (2001) 387-395] was earlier proposed to explain perpetuation of immunological memory without requiring long lived memory cells or persisting antigen. This hypothesis envisaged cycles of interaction and proliferation of complementary idiotypic B cells (Burnet cells) and anti-idiotypic B cells (Jerne cells) as the primary reason for perpetuation of immunological memory. The presence of pepti-domimics of antigen in anti-idiotypic antibody and their presentation to antigen specific T cells was postulated to be primary reason for perpetuation of T cell memory. Using a viral hemagglutinin as a model, in this work, we demonstrate the presence of peptidomimics in the variable region of ail anti-idiotypic antibody capable of functionally mimicking the antigen derived peptides. A CD8(+) CTL clone was generated against the hemagglutinin protein which specifically responds to either peptidomimic synthesizing cells or peptidomimic pulsed antigen presenting cells. Thus, it appears reasonable that a population of activated antigen specific T cells is maintained in the body by presentation of peptidomimic through Jerne cells and other antigen presenting cells long after immunization. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We are addressing a new problem of improving automatic speech recognition performance, given multiple utterances of patterns from the same class. We have formulated the problem of jointly decoding K multiple patterns given a single Hidden Markov Model. It is shown that such a solution is possible by aligning the K patterns using the proposed Multi Pattern Dynamic Time Warping algorithm followed by the Constrained Multi Pattern Viterbi Algorithm The new formulation is tested in the context of speaker independent isolated word recognition for both clean and noisy patterns. When 10 percent of speech is affected by a burst noise at -5 dB Signal to Noise Ratio (local), it is shown that joint decoding using only two noisy patterns reduces the noisy speech recognition error rate to about 51 percent, when compared to the single pattern decoding using the Viterbi Algorithm. In contrast a simple maximization of individual pattern likelihoods, provides only about 7 percent reduction in error rate.
Resumo:
We describe a novel method for human activity segmentation and interpretation in surveillance applications based on Gabor filter-bank features. A complex human activity is modeled as a sequence of elementary human actions like walking, running, jogging, boxing, hand-waving etc. Since human silhouette can be modeled by a set of rectangles, the elementary human actions can be modeled as a sequence of a set of rectangles with different orientations and scales. The activity segmentation is based on Gabor filter-bank features and normalized spectral clustering. The feature trajectories of an action category are learnt from training example videos using dynamic time warping. The combined segmentation and the recognition processes are very efficient as both the algorithms share the same framework and Gabor features computed for the former can be used for the later. We have also proposed a simple shadow detection technique to extract good silhouette which is necessary for good accuracy of an action recognition technique.
Resumo:
It Is well established that a sequence template along with the database is a powerful tool for identifying the biological function of proteins. Here, we describe a method for predicting the catalytic nature of certain proteins among the several protein structures deposited in the Protein Data Bank (PDB) For the present study, we considered a catalytic triad template (Ser-His-Asp) found in serine proteases We found that a geometrically optimized active site template can be used as a highly selective tool for differentiating an active protein among several inactive proteins, based on their Ser-His-Asp interactions. For any protein to be proteolytic in nature, the bond angle between Ser O-gamma-Ser H-gamma His N-epsilon 2 in the catalytic triad needs to be between 115 degrees and 140 degrees The hydrogen bond distance between Ser H-gamma His N-epsilon 2 is more flexible in nature and it varies from 2 0 angstrom to 27 angstrom while in the case of His H-delta 1 Asp O-delta 1, it is from 1.6 angstrom to 2.0 angstrom In terms of solvent accessibility, most of the active proteins lie in the range of 10-16 angstrom(2), which enables easy accessibility to the substrate These observations hold good for most catalytic triads and they can be employed to predict proteolytic nature of these catalytic triads (C) 2010 Elsevier B V All rights reserved.
Resumo:
In this paper, we describe a system for the automatic recognition of isolated handwritten Devanagari characters obtained by linearizing consonant conjuncts. Owing to the large number of characters and resulting demands on data acquisition, we use structural recognition techniques to reduce some characters to others. The residual characters are then classified using the subspace method. Finally the results of structural recognition and feature-based matching are mapped to give final output. The proposed system Ifs evaluated for the writer dependent scenario.
Resumo:
Antigen specific monoclonal antibodies present in crude hybridoma supernatants are normally screened by ELISA on plates coated with the relevant antigen. Screening for inhibitory monoclonals to enzymes would require the evaluation of purified antibodies or antibody containing supernatants for their inhibition of enzyme activity in a separate assay. However, screening for inhibitory antibodies against DNA transacting enzymes such as topoisomerase I (topo I) cannot be done using hybridoma supernatants due to the presence of nucleases in tissue culture media containing foetal calf serum which degrade the DNA substrates upon addition. We have developed a simple and rapid screening procedure for the identification of clones that secrete inhibitory antibodies against mycobacterial topo I using 96 well ELISA microtiter plates. The principle of the method is the selective capture of monoclonal antibodies from crude hybridoma supernatants by topo I that is tethered to the plate through the use of plate-bound polyclonal anti-topo I antibodies. This step allows the nucleases present in the medium to be washed off leaving the inhibitor bound to the tethered enzyme. The inhibitory activity of the captured antibody is assessed by performing an in situ DNA relaxation assay by the addition of supercoiled DNA substrate directly to the microtiter well followed by the analysis of the reaction products by agarose gel electrophoresis. The validity of this method was confirmed by purification of the identified inhibitory antibody and its evaluation in a DNA relaxation assay. Elimination of all enzyme-inhibitory constituents of the culture medium from the well in which the inhibitory antibody is bound to the tethered enzyme may make this method broadly applicable to enzymes such as DNA gyrases, restriction enzymes and other DNA transaction enzymes. Further, the method is simple and avoids the need of prior antibody purification for testing its inhibitory activity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Three conformationally locked fluorinated polycyclitols have been specially crafted on a rigid trans-decalin backbone, employing a surprisingly facile pyridine-poly(hydrogen fluoride)-mediated stereospecific epoxide ring opening as the key reaction. Molecula design of the three fluorinated probes under study focused on providing an efficient platform for (a) evaluating the ability of covalently bonded fluorine, vis-a-vis the isosteric hydroxy group, to act as a H-bond acceptor and (b) examining the possibility for an organic fluorine moiety, placed suitably in a spatially invariant position, to engage an 1,3-diaxial OH functionality in a purported intramolecular O-H center dot center dot center dot F hydrogen bond. The present endeavour reveals that C(sp(3))-F center dot center dot center dot H-C(sp(3)) hydrogen bonds, though weak and lesser investigated, can indeed be observed and supramolecular recognition motifs, involving such interactions, can be conserved even in crystal structures laden with stronger O-H center dot center dot center dot O hydrogen bonds.
Resumo:
Template matching is concerned with measuring the similarity between patterns of two objects. This paper proposes a memory-based reasoning approach for pattern recognition of binary images with a large template set. It seems that memory-based reasoning intrinsically requires a large database. Moreover, some binary image recognition problems inherently need large template sets, such as the recognition of Chinese characters which needs thousands of templates. The proposed algorithm is based on the Connection Machine, which is the most massively parallel machine to date, using a multiresolution method to search for the matching template. The approach uses the pyramid data structure for the multiresolution representation of templates and the input image pattern. For a given binary image it scans the template pyramid searching the match. A binary image of N × N pixels can be matched in O(log N) time complexity by our algorithm and is independent of the number of templates. Implementation of the proposed scheme is described in detail.