102 resultados para ADENINE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the intent of probing the feasibility of employing annulation as a tactic to engender axial rich conformations in nucleoside analogues, two adenine-derived, ``conformationally restricted'' nucleocylitols, 9 and 10, have been conceptualized as representatives of a hitherto unexplored class of nucleic acid base-cyclitol hybrids. A general synthetic strategy, with an inherent scope for diversification, allowed rapid functionalization of indane and tetralin to furnish 9 and 10 respectively in fair yield. Single-crystal X-ray diffraction analysis revealed that the two nucleocyclitols under study, though homologous, present completely dissimilar modes of molecular packing, marked, in particular, by the nature of involvement of the adenynyl NH2 group in the supramolecular assembly. In addition, the crystal structures of 9 and 10 also exhibit two different conformations of the functionalized cyclohexane ring. Thus, while the six-membered carbocycle in cyclopenta-annulated 9 exists in the expected chair (C) conformation that in cyclohexaannulated 10, which crystallizes as a dihydrate, shows an unusual twist-boat (TB) conformation. From a close analysis of the (HNMR)-H-1 spectroscopic data recorded for 9 and 10 in CD3OD, it was possible to put forth a putative explanation for the uncanny conformational preferences of crystalline 9 and 10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thiobacillus novellus was able to grow with oxalate, formate, formamide, and methanol as sole sources of carbon and energy. Extensive growth on methanol required yeast extract or vitamins. Glyoxylate carboligase was detected in extracts of oxalate-grown cells. Ribulose bisphosphate carboxylase was found in extracts of cells grown on formate, formamide, and thiosulfate. These data indicate that oxalate is utilized heterotrophically in the glycerate pathway, and formate and formamide are utilized autotrophically in the ribulose bisphosphate pathway. Nicotinamide adenine dinucleotide-linked formate dehydrogenase was present in extracts of oxalate-, formate-, formamide-, and methanol-grown cells but was absent in thiosulfate- and acetate-grown cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recognition of a specific DNA sequence by a protein is probably the best example of macromolecular interactions leading to various events. It is a prerequisite to understanding the basis of protein-DNA interactions to obtain a better insight into fundamental processes such as transcription, replication, repair, and recombination. DNA methyltransferases with varying sequence specificities provide an excellent model system for understanding the molecular mechanism of specific DNA recognition. Sequence comparison of cloned genes, along with mutational analyses and recent crystallographic studies, have clearly defined the functions of various conserved motifs. These enzymes access their target base in an elegant manner by flipping it out of the DNA double helix. The drastic protein-induced DNA distortion, first reported for HhaI DNA methyltransferase, appears to be a common mechanism employed by various proteins that need to act on bases. A remarkable feature of the catalytic mechanism of DNA (cytosine-5) methyltransferases is the ability of these enzymes to induce deamination of the target cytosine in the absence of S-adenosyl-L-methionine or its analogs. The enzyme-catalyzed deamination reaction is postulated to be the major cause of mutational hotspots at CpG islands responsible for various human genetic disorders. Methylation of adenine residues in Escherichia coli is known to regulate various processes such as transcription, replication, repair, recombination, transposition, and phage packaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystal structures of lithium, sodium, potassium, calcium and magnesium salts of adenosine 2'-monophosphate (2'-AMP) have been obtained at atomic resolution by X-ray crystallographic methods. 2'-AMP.Li belongs to the monoclinic space group P21 with a = 7.472(3)Å, b = 26.853(6) Å, c = 9.184(1)Å, b = 113.36(1)Å and Z= 4. 2'-AMP.Na and 2'-AMP.K crystallize in the trigonal space groups P31 and P3121 with a = 8.762(1)Å, c = 34.630(5)Å, Z= 6 and a = 8.931(4), Åc = 34.852(9)Å and Z= 6 respectively while 2'-AMP.Ca and 2'-AMP.Mg belong to space groups P6522 and P21 with cell parameters a = 9.487(2), c = 74.622(13), Z = 12 and a = 4.973(1), b = 10.023(2), c = 16.506(2), beta = 91.1(0) and Z = 2 respectively. All the structures were solved by direct methods and refined by full matrix least-squares to final R factors of 0.033, 0.028, 0.075, 0.069 and 0.030 for 2'-AMP.Li, 2'-AMP.Na, 2'- AMP.K, 2'-AMP.Ca and 2'-AMP.Mg, respectively. The neutral adenine bases in all the structures are in syn conformation stabilized by the O5'-N3 intramolecular hydrogen bond as in free acid and ammonium complex reported earlier. In striking contrast, the adenine base is in the anti geometry (cCN = -156.4(2)°) in 2'-AMP.Mg. Ribose moieties adopt C2'-endo puckering in 2'-AMP.Li and 2'-AMP.Ca, C2'-endo-C3'-exo twist puckering in 2'-AMP.Na and 2'-AMP.K and a C3'-endo-C2'-exo twist puckering in 2'-AMP.Mg structure. The conformation about the exocyclic C4'-C5' bond is the commonly observed gauche-gauche (g+) in all the structures except the gauche- trans (g-) conformation observed in 2'-AMP.Mg structure. Lithium ions coordinate with water, ribose and phosphate oxygens at distances 1.88 to 1.99Å. Na+ ions and K+ ions interact with phosphate and ribose oxygens directly and with N7 indirectly through a water oxygen. A distinct feature of 2'-AMP.Na and 2'-AMP.K structures is the involvement of ribose O4' in metal coordination. The calcium ion situated on a two-fold axis coordinates directly with three oxygens OW1, OW2 and O2 and their symmetry mates at distances 2.18 to 2.42Å forming an octahedron. A classic example of an exception to the existence of the O5'-N3 intramolecular hydorgen bond is the 2'-AMP.Mg strucure. Magnesium ion forms an octahedral coordination with three water and three phosphate oxygens at distances ranging from 2.02 to 2.11Å. A noteworthy feature of its coordination is the indirect link with N3 through OW3 oxygen resulting in macrochelation between the base and the phosphate group. Greater affnity of metal clays towards 5' compared to 2' and 3' nucleotides (J. Lawless, E. Edelson, and L. Manring, Am. Chem. Soc. Northwest Region Meeting, Seattle. 1978) due to macrochelation infered from solution studies (S. S. Massoud, H. Sigel, Eur. J. Biochem. 179, 451-458 (1989)) and interligand hydrogen bonding induced by metals postulated from metal-nucleotide structures in solid state (V. Swaminathan and M. Sundaralingam, CRC. Crit. Rev. Biochem. 6, 245-336 (1979)) are borne out by our structures also. The stacking patterns of adenine bases of both 2'-AMP.Na and 2'-AMP.K structures resemble the 2'-AMP.NH4 structure reported in the previous article. 2'-AMP.Li, 2'-AMP.Ca and 2'-AMP.Mg structures display base-ribose O4' stacking. An overview of interaction of monovalent and divalent cations with 2' and 5'-nucleotides has been presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of 5'-amino-5'-deoxyadenosine (5'-Am.dA) p-toluenesulfonate has been determined by X-ray crystallographic methods. It belongs to the orthorhombic space group P2(1)2(1)2(1) with a = 7.754(3)Angstrom, b = 8.065(1)Angstrom and c = 32.481(2)Angstrom. This nucleoside side shows a syn conformation about the glycosyl bond and C2'-endo-C3'-exo puckering for the ribose sugar. The orientation of N5' atom is gauche-trans about the exocyclic C4'-C5' bond. The amino nitrogen N5' forms a trifurcated hydrogen bond with N3, O9T and O4' atoms. Adenine bases form A.A.A triplets through hydrogen bonding between N6, N7 and N1 atoms of symmetry related nucleoside molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wealth of information available from x-ray crystallographic structures of enzyme-ligand complexes makes it possible to study interactions at the molecular level. However, further investigation is needed when i) the binding of the natural substrate must be characterized, because ligands in the stable enzyme-ligand complexes are generally inhibitors or the analogs of substrate and transition state, and when ii) ligand binding is in part poorly characterized. We have investigated these aspects i? the binding of substrate uridyl 3',5'-adenosine (UpA) to ribonuclease A (RNase A). Based on the systematically docked RNase A-UpA complex resulting from our previous study, we have undertaken a molecular dynamics simulation of the complex with solvent molecules. The molecular dynamics trajectories of this complex are analyzed to provide structural explanations for varied experimental observations on the ligand binding at the B2 subsite of ribonuclease A. The present study suggests that B2 subsite stabilization can be effected by different active site groups, depending on the substrate conformation. Thus when adenosine ribose pucker is O4'-endo, Gln69 and Glu111 form hydrogen-bonding contacts with adenine base, and when it is C2'-endo, Asn71 is the only amino acid residue in direct contact with this base. The latter observation is in support of previous mutagenesis and kinetics studies. Possible roles for the solvent molecules in the binding subsites are described. Furthermore, the substrate conformation is also examined along the simulation pathway to see if any conformer has the properties of a transition state. This study has also helped us to recognize that small but concerted changes in the conformation of the substrate can result in substrate geometry favorable for 2',3' cyclization. The identified geometry is suitable for intraligand proton transfer between 2'-hydroxyl and phosphate oxygen atom. The possibility of intraligand proton transfer as suggested previously and the mode of transfer before the formation of cyclic intermediate during transphosphorylation are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asymmetric diadenosine tetraphosphate (Ap(4)A) hydrolases degrade the metabolite Ap(4)A back into ATP and AMP. The three-dimensional crystal structure of Ap(4)A hydrolase (16 kDa) from Aquifex aeolicus has been determined in free and ATP-bound forms at 1.8 and 1.95 angstrom resolution, respectively. The overall three-dimensional crystal structure of the enzyme shows an alpha beta alpha-sandwich architecture with a characteristic loop adjacent to the catalytic site of the protein molecule. The ATP molecule is bound in the primary active site and the adenine moiety of the nucleotide binds in a ring-stacking arrangement equivalent to that observed in the X-ray structure of Ap(4)A hydrolase from Caenorhabditis elegans. Binding of ATP in the active site induces local conformational changes which may have important implications in the mechanism of substrate recognition in this class of enzymes. Furthermore, two invariant water molecules have been identified and their possible structural and/or functional roles are discussed. In addition, modelling of the substrate molecule at the primary active site of the enzyme suggests a possible path for entry and/or exit of the substrate and/or product molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIalpha to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIalpha. The results indicate that topo IIalpha binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIalpha displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIalpha to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIalpha. These results implicate a dual role for topo IIalpha in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inosine 5' monophosphate dehydrogenase (IMPDH II) is a key enzyme involved in the de novo biosynthesis pathway of purine nucleotides and is also considered to be an excellent target for cancer inhibitor design. The conserve R 322 residue (in human) is thought to play some role in the recognition of inhibitor and cofactor through the catalytic D 364 and N 303. The 15 ns simulation and the water dynamics of the three different PDB structures (1B3O, 1NF7, and 1NFB) of human IMPDH by CHARMM force field have clearly indicated the involvement of three conserved water molecules (W-L, W-M, and W-C) in the recognition of catalytic residues (R 322, D 364, and N 303) to inhibitor and cofactor. Both the guanidine nitrogen atoms (NH1 and NH 2) of the R 322 have anchored the di- and mono-nucleotide (cofactor and inhibitor) binding domains via the conserved W-C and W-L water molecules. Another conserved water molecule W-M seems to bridge the two domains including the R 322 and also the W-C and W-L through seven centers H-bonding coordination. The conserved water molecular triad (W-C - W-M - W-L) in the protein complex may thought to play some important role in the recognition of inhibitor and cofactor to the protein through R 322 residue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the binding energy of various nucleobases (guanine (G), adenine (A), thymine (T) and cytosine (C)) with (5,5) single-walled carbon nanotube (SWNT) calculated using first-principle Hartre–Fock method (HF) together with classical force field. The binding energy without including the solvation effects of water decreases in the order G>A>T>C. The inclusion of solvation energy changes the order of binding preference to be G>T>A>C. Using isothermal titration (micro) calorimetry experiments, we also show the relative binding affinity to be T>A>C, in agreement with our calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of a significant number of the Structures of helical membrane proteins has prompted us to investigate the mode of helix-helix packing. In the present study, we have considered a dataset of alpha-helical membrane proteins representing Structures solved from all the known superfamilies. We have described the geometry of all the helical residues in terms of local coordinate axis at the backbone level. Significant inter-helical interactions have been considered as contacts by weighing the number of atom-atom contacts, including all the side-chain atoms. Such a definition of local axis and the contact criterion has allowed us to investigate the inter-helical interaction in a systematic and quantitative manner. We show that a single parameter (designated as alpha), which is derived from the parameters representing the Mutual orientation of local axes, is able to accurately Capture the details of helix-helix interaction. The analysis has been carried Out by dividing the dataset into parallel, anti-parallel, and perpendicular orientation of helices. The study indicates that a specific range of alpha value is preferred for interactions among the anti-parallel helices. Such a preference is also seen among interacting residues of parallel helices, however to a lesser extent. No such preference is seen in the case of perpendicular helices, the contacts that arise mainly due to the interaction Of Surface helices with the end of the trans-membrane helices. The Study Supports the prevailing view that the anti-parallel helices are well packed. However, the interactions between helices of parallel orientation are non-trivial. The packing in alpha-helical membrane proteins, which is systematically and rigorously investigated in this study, may prove to be useful in modeling of helical membrane proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical functionalization of a Au electrode with a redox-active monolayer and the electroanalytical applications of the functionalized electrode are described. Reaction of the electrochemically derived o-quinone on the self-assembled monolayer (SAM) of 6-mercaptopurine (MPU) on a Au electrode gives a redox-active 4-(6-mercapto-purin-9-yl)benzene-1,2-diol (MPBD) self-assembly under optimized conditions. Electrochemical quartz crystal microbalance technique has been employed to follow the functionalization of the electrode in real time. Electrochemically derived o-quinone reacts at the N(9) position of the self-assembled MPU in neutral pH. Raman spectral measurement confirms the reaction of o-quinone on MPU self-assembly. MPBD shows a well-defined reversible redox response, characteristic of a surface-confined redox mediator at 0.21 V in neutral pH. The anodic peak potential (Epa) of MPBD shifts by −60 mV while changing the solution pH by 1 unit, indicating that the redox reaction involves two electrons and two protons. The surface coverage (Γ) of MPBD was 7.2 ± 0.3 × 10-12 mol/cm2. The apparent heterogeneous rate constant (ksapp) for MPBD was 268 ± 6 s-1. MPBD efficiently mediates the oxidation of nicotinamide adenine dinucleotide (NADH) and ascorbate (AA). A large decrease in the overpotential and significant increase in the peak current with respect to the unmodified electrode has been observed. Surface-confined MPBD has been successfully used for the amperometric sensing of NADH and AA in neutral pH at the nanomolar level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Towards understanding the catalytic mechanism of M.EcoP15I [EcoP15I MTase (DNA methyltransferase); an adenine methyltransferase], we investigated the role of histidine residues in catalysis. M.EcoP15I, when incubated with DEPC (diethyl pyrocarbonate), a histidine-specific reagent, shows a time- and concentration-dependent inactivation of methylation of DNA containing its recognition sequence of 5'-CAGCAG-3'. The loss of enzyme activity was accompanied by an increase in absorbance at 240 nm. A difference spectrum of modified versus native enzyme shows the formation of N-carbethoxyhistidine that is diminished by hydroxylamine. This, along with other experiments, strongly suggests that the inactivation of the enzyme by DEPC was specific for histidine residues. Substrate protection experiments show that pre-incubating the methylase with DNA was able to protect the enzyme from DEPC inactivation. Site-directed mutagenesis experiments in which the 15 histidine residues in the enzyme were replaced individually with alanine corroborated the chemical modification studies and established the importance of His-335 in the methylase activity. No gross structural differences were detected between the native and H335A mutant MTases, as evident from CD spectra, native PAGE pattern or on gel filtration chromatography. Replacement of histidine with alanine residue at position 335 results in a mutant enzyme that is catalytically inactive and binds to DNA more tightly than the wild-type enzyme. Thus we have shown in the present study, through a combination of chemical modification and site-directed mutagenesis experiments, that His-335 plays an essential role in DNA methylation catalysed by M.EcoP15I.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is now well established that the potent anti-microbial compound, triclosan, interrupts the type II fatty acid synthesis by inhibiting the enzyme enoyl-ACP reductase in a number of organisms. Existence of a high degree of similarity between the recently discovered enoyl-ACP reductase from R falciparum and B. napus enzyme permitted building of a satisfactory model for the former enzyme that explained some of the key aspects of the enzyme such as its specificity for binding to the cofactor and the inhibitor. We now report the interaction energies between triclosan and other hydroxydiphenyl ethers with the enzymes from B. napus, E. coli and R falciparum. Examination of the triclosan-enzyme interactions revealed that subtle differences exist in the ligand binding sites of the enzymes from different sources i.e., B. napus, E. coli and P falciparum. A comparison of their binding propensities thus determined should aid in the design of effective inhibitors for the respective enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fabrication of multilayer microcapsules via layer-by-layer approach through hydrogen bonding has attracted enormous interest due to its strong response to pH. In this communication, we have prepared hydrogen-bonded multilayer microcapsule without using any cross-linking agent by using DNA base pair (adenine and thymine) modified biocompatible polymers. The growth of the self-assembly on colloidal (melamine formaldehyde: MF) particles has been monitored with zeta potential measurement. The capsules were obtained on dissolution of MF particles at 0.1N HCl. The capsules were characterized with scanning electron microscopy. Moreover, we have observed the salt induced microscopic change in self-assembly of this system on the surface of colloidal particles.