812 resultados para ACS
Resumo:
The application of radical-mediated cyclizations and annulations in organic synthesis has grown in importance steadily over the years to reach the present status where they are now routinely used in the strategy-level planning.2 The presence of a quaternary carbon atom is frequently encountered in terpenoid natural products, and it often creates a synthetic challenge when two or more quaternary carbon atoms are present in a contiguous manner.3 Even though creation of a quaternary carbon atom by employing a tertiary radical is very facile, creation of a quaternary carbon atom (or a spiro carbon atom) via radical addition onto a fully substituted olefinic carbon atom is not that common but of synthetic importance. For example, the primary radical derived from the bromide 1 failed to cyclize to generate the two vicinal quaternary carbon atoms and resulted in only the reduced product 2.4 The tricyclic carbon framework tricyclo[6.2.1.01,5]undecane (3) is present in a number of sesquiterpenoids e.g. zizzanes, prelacinanes, etc.5
Resumo:
Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.
Resumo:
Arc discharge between graphite electrodes under a relatively high pressure of hydrogen yields graphene flakes generally containing 2-4 layers in the inner wall region of the arc chamber. The graphene flakes so obtained have been characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, and Raman spectroscopy. The method is eminently suited to dope graphene with boron and nitrogen by carrying out arc discharge in the presence of diborane and pyridine respectively.
Resumo:
In this paper, inhibition of the glutathione peroxidase activity of two synthetic organoselenium compounds, bis[2-(N,N-dimethylamino)benzyl]diselenide (5) and bis[2-(N,N-dimethylamino)benzyl]selenide (9), by gold(I) thioglucose (1), chloro(triethylphosphine)gold(I), chloro(trimethylphosphine)gold(I), and chloro(triphenylphosphine)gold(I) is described. The inhibition is found to be competitive with respect to a peroxide (H2O2) substrate and noncompetitive with respect to a thiol (PhSH) cosubstrate. The diselenide 5 reacts with PhSH to produce the corresponding selenol (6), which upon treatment with 1 equiv of gold(I) chlorides produces the corresponding gold selenolate complexes 11−13. However, the addition of 1 equiv of selenol 6 to complexes 11−13 leads to the formation of bis-selenolate complex 14 by ligand displacement reactions involving the elimination of phosphine ligands. The phosphine ligands eliminated from these reactions are further converted to the corresponding phosphine oxides (R3PO) and selenides (R3PSe). In addition to the replacement of the phosphine ligand by selenol 6, an interchange between two different phosphine ligands is also observed. For example, the reaction of complex 11 having a trimethylphosphine ligand with triphenylphosphine produces complex 13 by phosphine interchange reactions via the formation of intermediates 15 and 16. The reactivity of selenol 6 toward gold(I) phosphines is found to be similar to that of selenocysteine.
Resumo:
The self-assembly reaction of a cis-blocked 90° square planar metal acceptor with a symmetrical linear flexible linker is expected to yield a [4 + 4] self-assembled square, a [3 + 3] assembled triangle, or a mixture of these.However, if the ligand is a nonsymmetrical ambidentate, it is expected to form a complex mixture comprising several linkage isomeric squares and triangles as a result of different connectivities of the ambidentate linker. We report instead that the reaction of a 90° acceptor cis-(dppf)Pd(OTf)2 [where dppf ) 1,1′-bis(diphenylphosphino)- ferrocene] with an equimolar amount of the ambidentate unsymmetrical ligand Na-isonicotinate unexpectedly yields a mixture of symmetrical triangles and squares in the solution. An analogous reaction using cis-(tmen)Pd(NO3)2 instead of cis-(dppf)Pd(OTf)2 also produced a mixture of symmetrical triangles and squares in the solution. In both cases the square was isolated as the sole product in the solid state, which was characterized by a single crystal structure analysis. The equilibrium between the triangle and the square in the solution is governed by the enthalpic and entropic contributions. The former parameter favors the formation of the square due to less strain in the structure whereas the latter one favors the formation of triangles due to the formation of more triangles from the same number of starting linkers. The effects of temperature and concentration on the equilibria have been studied by NMR techniques. This represents the first report on the study of square-triangle equilibria obtained using a nonsymmetric ambidentate linker. Detail NMR spectroscopy along with the ESI-mass spectrometry unambiguously identified the components in the mixture while the X-ray structure analysis determined the solid-state structure.
Resumo:
Ternary iron(III) complexes (FeL(B)] (1-3) of a trianionic tetradentate phenolate-based ligand (L) and henanthroline base (B), namely, 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), have been prepared and structurally characterized and their DNA binding, cleavage, and photocytotoxic properties studied. The complexes with a FeN3O3 core show the Fe(III)/Fe(II) redox couple near -0.6 V in DMF, a magnetic moment value of similar to 5.9 mu(B), and a binding propensity to both calf thymus DNA and bovine serum albumin (BSA) protein. They exhibit red-light-induced DNA cleavage activity following a metal-assisted photoredox pathway forming HO center dot radicals but do not show any photocleavage of BSA in UV-A light. Complex 3 displays photocytotoxicity in the human cervical cancer cell line (HeLa) and human keratinocyte cell line (HaCaT) with respective IC50 values of 3.59 mu M and 6.07 mu M in visible light and 251 nM and 751 nM in UV-A light of 365 nm. No significant cytotoxicity is observed in the dark. The photoexposed HeLa cells, treated prior with complex 3, have shown marked changes in nuclear morphology as demonstrated by Hoechst 33258 nuclear stain. Generation of reactive oxygen species has been evidenced from the fluorescence enhancement of dichlorofluorescein upon treatment with 3 followed by photoexposure. Nuclear chromatin cleavage has been observed in acridine orange/ethidium bromide dual staining of treated HeLa cells and from alkaline single-cell gel electrophoresis. Caspase 3/7 activity in HeLa cells has been found to be upregulated by only 4 fold after photoirradiation, signifying the fact that cell death through a caspase 3/7 dependent pathway may not be solely operative.
Resumo:
Transactivator protein C of bacteriophage mu is essential for the transition from middle to late gene expression during the phage life cycle. The unusual, multistep activation of mom promoter (Pmom) by C protein involves activator-mediated promoter unwinding to recruit RNA polymerase and subsequent enhanced promoter clearance of the enzyme. To achieve this, C binds its site overlapping the -35 region of the mom promoter with a very high affinity, in Mg2+-dependent fashion. Mg2+-mediated conformational transition in C is necessary for its DNA binding and transactivation. We have determined the residues in C which coordinate Mg2+, to induce allosteric transition in the protein, required for the specific interaction with DNA. Residues E26 and D40 in the putative metal binding motif (E26X10D37X2D40) present toward the N-terminus of the protein are found to be important for Mg2+ ion binding. Mutations in these residues lead to altered Mg2+-induced conformation, compromised DNA binding, and reduced levels of transcription activation. Although Mg2+ is widely used in various DNA transaction reactions, this report provides the first insights on the importance of the metal ion-induced allosteric transitions in regulating transcription factor function.
Resumo:
A detailed study of the solvation dynamics of a charged coumarin dye molecule in gamma-cyclodextrin/water has been carried out by using two different theoretical approaches. The first approach is based on a multishell continuum model (MSCM). This model predicts the time scales of the dynamics rather well, provided an accurate description of the frequency-dependent dielectric function is supplied. The reason for this rather surprising agreement is 2-fold. First, there is a cancellation of errors, second, the two-zone model mimics the heterogeneous microenvironment surrounding the ion rather well. The second approach is based on the molecular hydrodynamics theory (MI-IT). In this molecular approach, the solvation dynamics has been studied by restricting the translational motion of the solvent molecules enclosed within the cavity. The results from the molecular theory are also in good agreement with the experimental results. Our study indicates that, in the present case, the restricted environment affects only the long time decay of the solvation time correlation function. The short time dynamics is still governed by the librational (and/or vibrational) modes present in bulk water.
Resumo:
At low temperature (below its freezing/melting temperature), liquid water under confinement is known to exhibit anomalous dynamical features. Here we study structure and dynamics of water in the grooves of a long DNA duplex using molecular dynamics simulations with TIP5P potential at low temperature. We find signatures of a dynamical transition in both translational and orientational dynamics of water molecules in both the major and the minor grooves of a DNA duplex. The transition occurs at a slightly higher temperature (TGL ≈ 255 K) than the temperature at which the bulk water is found to undergo a dynamical transition, which for the TIP5P potential is at 247 K. Groove water, however, exhibits markedly different temperature dependence of its properties from the bulk. Entropy calculations reveal that the minor groove water is ordered even at room temperature, and the transition at T ≈ 255 K can be characterized as a strong-to-strong dynamical transition. Confinement of water in the grooves of DNA favors the formation of a low density four-coordinated state (as a consequence of enthalpy−entropy balance) that makes the liquid−liquid transition stronger. The low temperature water is characterized by pronounced tetrahedral order, as manifested in the sharp rise near 109° in the O−O−O angle distribution. We find that the Adams−Gibbs relation between configurational entropy and translational diffusion holds quite well when the two quantities are plotted together in a master plot for different region of aqueous DNA duplex (bulk, major, and minor grooves) at different temperatures. The activation energy for the transfer of water molecules between different regions of DNA is found to be weakly dependent on temperature.
Resumo:
Synthetic routes leading to 12 L-phenylalanine based mono- and bipolar derivatives (1-12) and an in-depth study of their structure-property relationship with respect to gelation have been presented. These include monopolar systems such as N-[(benzyloxy)carbonyl]-L-phenylalanine-N-alkylamides and the corresponding bipolar derivatives with flexible and rigid spacers such as with 1,12-diaminododecane and 4,4'-diaminodiphenylmethane, respectively. The two ends of the latter have been functionalized with N-[(benzyloxy)carbonyl]-L-phenylalanine units via amide connection. Another bipolar molecule was synthesized in which the middle portion of the hydrocarbon segment contained polymerizable diacetylene unit. To ascertain the role of the presence of urethane linkages in the gelator molecule protected L-phenylalanine derivatives were also synthesized in which the (benzyloxy)carbonyl group has been replaced with (tert-butyloxy)carbonyl, acetyl, and benzoyl groups, respectively. Upon completion of the synthesis and adequate characterization of the newly described molecules, we examined the aggregation and gelation properties of each of them in a number of solvents and their mixtures. Optical microscopy and electron microscopy further characterized the systems that formed gels. Few representative systems, which showed excellent gelation behavior was, further examined by FT-IR, calorimetric, and powder X-ray diffraction studies. To explain the possible reasons for gelation, the results of molecular modeling and energy-minimization studies were also included. Taken together these results demonstrate the importance of the presence of (benzyloxy)carbonyl unit, urethane and secondary amide linkages, chiral purities of the headgroup and the length of the alkyl chain of the hydrophobic segment as critical determinants toward effective gelation.
Resumo:
In this paper, we report on the growth and characterization of quantum dot−quantum well nanostructures with photoluminescence (PL) that is tunable over the visible range. The material exhibits a PL efficiency as high as 60% and is prepared by reacting ZnS nanocrystals in turn with precursors for CdSe and ZnS in an attempt to form a simple “ZnS/CdSe/ZnS quantum-well structure”. Through the use of synchrotron radiation-based photoelectron spectroscopy in conjunction with detailed overall compositional analysis and correlation with the size of the final composite nanostructure, the internal structure of the composite nanocrystals is shown to consist of a graded alloy core whose composition gradually changes from ZnS at the very center to CdSe at the onset of a CdSe layer. The outer shell is ZnS with a sharp interface, probably reflecting the relative thermodynamic stabilities of the parent binary phases. These contrasting aspects of the internal structure are discussed in terms of the various reactivities and are shown to be crucial for understanding the optical properties of such complex heterostructured nanomaterials.
Resumo:
Copper(II) complexes [Cu(L-arg)(2)](NO3)(2) (1) and [Cu(L-arg)(B)Cl]Cl (2-5), where B is a heterocyclic base, namely, 2,2'-bipyridine (bpy, 2), 1,10-phenanthroline (phen, 3), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 4), and dipyrido[3,2-a:2',3'-c)phenazine (dppz, 5), are prepared and their DNA binding and photoinduced DNA cleavage activity studied. Ternary complex 3, structurally characterized using X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor L-arginine and N,N-donor 1,10-phenanthroline form the basal plane with one chloride at the elongated axial site. The complex has a pendant cationic guanidinium moiety. The one-electron paramagnetic complexes display a metal-centered d-d band in the range of 590-690 nm in aqueous DMF They show quasireversible cyclic voltammetric response due to the Cu(II)/Cu(I) couple in the range of -0.1 to -0.3 V versus a saturated calomel electrode in a DMF-Tris HCl buffer (pH 7.2). The DNA binding propensity of the complexes is studied using various techniques. Copper(II) bis-arginate 1 mimics the minor groove binder netropsin by showing preferential binding to the AT-rich sequence of double-strand (ds) DNA. DNA binding study using calf thymus DNA gives an order: 5 (L-arg-dppz) >= 1 (biS-L-arg) > 4 (L-arg-dpq) > 3 (L-arg-phen) >> 2 (L-arg-bpy). Molecular docking calculations reveal that the complexes bind through extensive hydrogen bonding and electrostatic interactions with ds-DNA. The complexes cleave supercoiled pUC19 DNA in the presence of 3-mercaptopropionic acid as a reducing agent forming hydroxyl ((OH)-O-center dot) radicals. The complexes show oxidative photoinduced DNA cleavage activity in UV-A light of 365 nm and red light of 647.1 nm (Ar-Kr mixed-gas-ion laser) in a metal-assisted photoexcitation process forming singlet oxygen (O-1(2)) species in a type-II pathway. All of the complexes, barring complex 2, show efficient DNA photocleavage activity. Complexes 4 and 5 exhibit significant double-strand breaks of DNA in red light of 647.1 nm due to the presence of two photosensitizers, namely, L-arginine and dpq or dppz in the molecules.
Resumo:
Ferrocene-appended ternary copper(H) complexes of phenanthroline bases having CuN3OS coordination with an axial Cu-S bond derived from L-methionine reduced Schiff base shows red light induced oxidative DNA cleavage activity following a hydroxyl radical pathway. The dipyridophenazine complex, in addition, displays photoinduced oxidative cleavage of bovine serum albumin protein in UV-A light.
Resumo:
Quinuclidine grafted cationic bile salts are forming salted hydrogels. An extensive investigation of the effect of the electrolyte and counterions on the gelation has been envisaged. The special interest of the quinuclidine grafted bile salt is due to its broader experimental range of gelation to study the effect of electrolyte. Rheological features of the hydrogels are typical of enthalpic networks exhibiting a scaling law of the elastic shear modulus with the concentration (scaling exponent 2.2) modeling cellular solids in which the bending modulus is the dominant parameter. The addition of monovalent salt (NaCl) favors the formation of gels in a first range (0.00117 g cm-3 (0.02 M) < TNaCl < 0.04675 g cm-3 (0.8 M)). At larger salt concentrations, the gels become more heterogeneous with nodal zones in the micron scale. Small-angle neutron scattering experiments have been used to characterize the rigid fibers (
Resumo:
Ion transport mechanism in lithium perchlorate (LiClO4)-succinonitrile (SN), a prototype of plastic crystalline soft matter electrolyte is discussed in the context of solvent configurational isomerism and ion solvation. Contributions of both solvent configurational isomerism and ion solvation are reflected in the activation energy for ion conduction in 0-1 M LiClO4-SN samples. Activation energy due to solvent configurational changes, that is, trans-gauche isomerism is observed to be a function of salt content and decreases in presence of salt (except at high salt concentrations, e.g. 1 M LiClO4-SN). The remnant contribution to activation energy is attributed to ion-association. The X-ray diffraction of single crystals obtained using in situ cryo-crystallography confirms directly the observations of the ionic conductivity measurements. Fourier transform infrared spectroscopy and NMR line width measurements provide additional support to our proposition of ion transport in the prototype plastic crystalline electrolyte.