34 resultados para 630


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 degrees C) associated with four different plate inclinations (30 degrees, 45 degrees, 60 degrees and 75 degrees). Melt pouring temperature of 625 degrees C with plate inclination of 60 degrees shows fine and globular microstructures and it is the optimum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molten A356 aluminum alloy flowing on an oblique plate is water cooled from underneath. The melt partially solidifies on plate wall with continuous formation of columnar dendrites. These dendrites are continuously sheared off into equiaxed/fragmented grains and carried away with the melt by producing semisolid slurry collected at plate exit. Melt pouring temperature provides required solidification whereas plate inclination enables necessary shear for producing slurry of desired solid fraction. A numerical model concerning transport equations of mass, momentum, energy and species is developed for predicting velocity, temperature, macrosegregation and solid fraction. The model uses FVM with phase change algorithm, VOF and variable viscosity. The model introduces solid phase movement with gravity effect as well. Effects of melt pouring temperature and plate inclination on hydrodynamic and thermo-solutal behaviors are studied subsequently. Slurry solid fractions at plate exit are 27%, 22%, 16%, and 10% for pouring temperatures of 620 degrees C, 625 degrees C, 630 degrees C, and 635 degrees C, respectively. And, are 27%, 25%, 22%, and 18% for plate inclinations of 30, 45, 60, and 75, respectively. Melt pouring temperature of 625 degrees C with plate inclination of 60 generates appropriate quality of slurry and is the optimum. Both numerical and experimental results are in good agreement with each other. (C) 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferroelectricity in ZnO is an unlikely physical phenomenon. Here, we show ferroelectricity in undoped 001] ZnO nanorods due to zinc vacancies. Generation of ferroelectricity in a ZnO nanorod effectively increases its piezoelectricity and turns the ZnO nanorod into an ultrahigh-piezoelectric material. Here using piezoelectric force microscopy (PFM), it is observed that increasing the frequency of the AC excitation electric field decreases the effective d(33). Subsequently, the existence of a reversible permanent electric dipole is also found from the P-E hysteresis loop of the ZnO nanorods. Under a high resolution transmission electron microscope (HRTEM), we observe a zinc blende stacking in the wurtzite stacking of a single nanorod along the growth axis. The zinc blende nature of this defect is also supported by the X-ray diffraction (XRD) and Raman spectra. The presence of zinc vacancies in this basal stacking fault modulates p-d hybridization of the ZnO nanorod and produces a magnetic moment through the adjacent oxygen ions. This in turn induces a reversible electric dipole in the non-centrosymmetric nanostructure and is responsible for the ultrahigh-piezoelectric response in these undoped ZnO nanorods. We reveal that this defect engineered ZnO can be considered to be in the competitive class of ultrahigh-piezoelectric nanomaterials for energy harvesting and electromechanical device fabrication.