33 resultados para 495
Resumo:
Concentration of greenhouse gases (GHG) in the atmosphere has been increasing rapidly during the last century due to ever increasing anthropogenic activities resulting in significant increases in the temperature of the Earth causing global warming. Major sources of GHG are forests (due to human induced land cover changes leading to deforestation), power generation (burning of fossil fuels), transportation (burning fossil fuel), agriculture (livestock, farming, rice cultivation and burning of crop residues), water bodies (wetlands), industry and urban activities (building, construction, transport, solid and liquid waste). Aggregation of GHG (CO2 and non-CO2 gases), in terms of Carbon dioxide equivalent (CO(2)e), indicate the GHG footprint. GHG footprint is thus a measure of the impact of human activities on the environment in terms of the amount of greenhouse gases produced. This study focuses on accounting of the amount of three important greenhouses gases namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and thereby developing GHG footprint of the major cities in India. National GHG inventories have been used for quantification of sector-wise greenhouse gas emissions. Country specific emission factors are used where all the emission factors are available. Default emission factors from IPCC guidelines are used when there are no country specific emission factors. Emission of each greenhouse gas is estimated by multiplying fuel consumption by the corresponding emission factor. The current study estimates GHG footprint or GHG emissions (in terms of CO2 equivalent) for Indian major cities and explores the linkages with the population and GDP. GHG footprint (Aggregation of Carbon dioxide equivalent emissions of GHG's) of Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad are found to be 38,633.2 Gg, 22,783.08 Gg, 14,812.10 Gg, 22,090.55 Gg, 19,796.5 Gg, 13,734.59 Gg and 91,24.45 Gg CO2 eq., respectively. The major contributors sectors are transportation sector (contributing 32%, 17.4%, 13.3%, 19.5%, 43.5%, 56.86% and 25%), domestic sector (contributing 30.26%, 37.2%, 42.78%, 39%, 21.6%, 17.05% and 27.9%) and industrial sector (contributing 7.9%, 7.9%, 17.66%, 20.25%, 1231%, 11.38% and 22.41%) of the total emissions in Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad, respectively. Chennai emits 4.79 t of CO2 equivalent emissions per capita, the highest among all the cities followed by Kolkata which emits 3.29 t of CO2 equivalent emissions per capita. Also Chennai emits the highest CO2 equivalent emissions per GDP (2.55 t CO2 eq./Lakh Rs.) followed by Greater Bangalore which emits 2.18 t CO2 eq./Lakh Rs. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this article, the design and development of a Fiber Bragg Grating (FBG) based displacement sensor package for submicron level displacement measurements are presented. A linear shift of 12.12 nm in Bragg wavelength of the FBG sensor is obtained for a displacement of 6 mm with a calibration factor of 0.495 mu m/pm. Field trials have also been conducted by comparing the FBG displacement sensor package against a conventional dial gauge, on a five block masonry prism specimen loaded using three-point bending technique. The responses from both the sensors are in good agreement, up to the failure of the masonry prism. Furthermore, from the real-time displacement data recorded using FBG, it is possible to detect the time at which early creaks generated inside the body of the specimen which then prorogate to the surface to develop visible surface cracks; the respective load from the load cell can be obtained from the inflection (stress release point) in the displacement curve. Thus the developed FBG displacement sensor package can be used to detect failures in structures much earlier and to provide an adequate time to exercise necessary action, thereby avoiding the possible disaster.
Resumo:
Helmke et al. have recently given a formula for the number of reachable pairs of matrices over a finite field. We give a new and elementary proof of the same formula by solving the equivalent problem of determining the number of so called zero kernel pairs over a finite field. We show that the problem is, equivalent to certain other enumeration problems and outline a connection with some recent results of Guo and Yang on the natural density of rectangular unimodular matrices over F-qx]. We also propose a new conjecture on the density of unimodular matrix polynomials. (C) 2016 Elsevier Inc. All rights reserved.