35 resultados para 2 sigma
Resumo:
We consider the (2 + 1) flavor Polyakov quark-meson model and study the effect of including fermion vacuum fluctuations on the thermodynamics and phase diagram. The resulting model predictions are compared to the recent QCD lattice simulations by the HotQCD and Wuppertal-Budapest collaborations. The variation of the thermodynamic quantities across the phase transition region becomes smoother. This results in better agreement with the lattice data. Depending on the value of the mass of the sigma meson, including the vacuum term results in either pushing the critical end point into higher values of the chemical potential or excluding the possibility of a critical end point altogether.
Resumo:
Transcription is the most fundamental step in gene expression in any living organism. Various environmental cues help in the maturation of core RNA polymerase (RNAP; alpha(2)beta beta'omega) with different sigma-factors, leading to the directed recruitment of RNAP to different promoter DNA sequences. Thus it is essential to determine the sigma-factors that affect the preferential partitioning of core RNAP among various a-actors, and the role of sigma-switching in transcriptional gene regulation. Further, the macromolecular assembly of holo RNAP takes place in an extremely crowded environment within a cell, and thus far the kinetics and thermodynamics of this molecular recognition process have not been well addressed. In this study we used a site-directed bioaffinity immobilization method to evaluate the relative binding affinities of three different Escherichia coli sigma-factors to the same core RNAP with variations in temperature and ionic strength while emulating the crowded cellular milieu. Our data indicate that the interaction of core RNAP-sigma is susceptible to changes in external stimuli such as osmolytic and thermal stress, and the degree of susceptibility varies among different sigma-factors. This allows for a reversible sigma-switching from housekeeping factors to alternate sigma-factors when the organism senses a change in its physiological conditions.
Resumo:
Solid-state polymer electrolytes possess high conductivity and have advantages compared with their liquid counterparts. The polyethylene oxide (PEO)-based polymer is a good candidate for this purpose. The PEO/SnCl2/polyaniline composite (PSP composites) at different weight percentages were prepared in anhydrous acetonitrile media. Structural studies were carried out of the prepared composites by X-ray diffraction, Fourier transmission infrared spectroscopy, and surface morphology by scanning electron microscopy. The sigma (dc) was carried out by a two-probe method, and it is found that the conductivity increases with an increase in temperature. The temperature-dependent conductivity of the composites exhibits a typical semi-conducting behavior and hence can be explained by the 1D variable range hopping model proposed by Mott. The electrochemical cell parameters for battery applications at room temperature have also been determined. The samples are fabricated for battery application in the configuration of Na: (PSP): (I-2 + C + sample), and their experimental data are measured using Wagner's polarization technique. The cell parameters result in an open-circuit voltage of 0.83 V and a short-circuit current of 912 mu A for PSP (70:30:10) composite. Hence, these composites can be used in polymer electrolyte studies.
Resumo:
The five-coordinated 16-electron complex Ru(Me)(dppe)(2)]OTf] (3) undergoes methane elimination at room temperature to afford the ortho-metalated species (dppe){(C6H5)(C6H4)PCH2CH2P(C6H5)(2)}Ru]OTf] (7). Methane elimination, monitored using NMR spectroscopy, revealed no intermediate throughout the reaction. The NOE between Ru-Me protons and ortho phenyl protons and an agostic interaction trans to the methyl group were found in complex 3 by NMR spectroscopy, which form the basis for three plausible pathways for methane elimination and ortho metalation: pathway I (through spatial interaction), pathway II (through oxidative addition and reductive elimination), and pathway III (through agostic interaction). Methane elimination from complex 3 via pathway I was discounted, since it involves interactions through space and not through bonds. Moreover, the calculated energy barrier for the pathway I transition state was quite high (71.3 kcal/mol), which also indicates that this pathway is very unlikely. Furthermore, no spectroscopic evidence for oxidatively added seven-coordinated Ru(IV) species was found and the computed energy barrier of the transition state for pathway II was moderately high (41.1 kcal/mol), which suggests that this cannot be the right pathway for methane elimination and ortho-metalation of complex 3. On the other hand, indirect evidence in the form of chemical reactions point to the most plausible pathway for methane elimination, pathway III, via the intermediacy of a sigma-CH4 complex that could not be found spectroscopically. DFT calculations at several levels on this pathway showed an initial low-barrier rearrangement through TS1 to a square-pyramidal intermediate wherein methyl and agostic C-H are cis to each other. Migration of hydrogen from agostic C-H and elimination of methane proceed through the transition state TS2, which retains a weak metal-H bonding through most parts of the reaction coordinate. Upon comparison of all three pathways, pathway III was found to be the most likely for methane elimination and ortho-metalation of complex 3.
Resumo:
Mycobacterium tuberculosis has multiple sigma factors which enable the bacterium to reprogram its transcriptional machinery under diverse environmental conditions. sigma(J), an extracytoplasmic function sigma factor, is upregulated in late stationary phase cultures and during human macrophage infection. sigma(J) governs the cellular response to hydrogen peroxide-mediated oxidative stress. sigma(J) differs from other canonical sigma factors owing to the presence of a SnoaL_2 domain at the C-terminus. sigma(J) crystals belonged to the tetragonal space group I422, with unit-cell parameters a = b = 133.85, c = 75.08 angstrom. Diffraction data were collected to 2.16 angstrom resolution on the BM14 beamline at the European Synchrotron Radiation Facility (ESRF).