51 resultados para 2,6,10,15,19-pentamethylicosane
Resumo:
In the title moleclue, C25H23NO2, the 4-piperidone ring adopts a boat conformation. The molecular conformation is stabilized by an intramolecular C-H center dot center dot center dot O hydrogen bond. In the crystal, molecules are connected through weak intermolecular C-H center dot center dot center dot O hydrogen bonds.
Resumo:
Pressure dependence of the 35Cl Nuclear Quadrupole Resonances (N.Q.R.) in 2,5-, 2,6- and 3,5-dichlorophenols (DCP) has been studied up to a pressure of about 6·5 kbar at room temperature. While the pressure dependence of the two resonance lines in 2,6-DCP is essentially similar, the lower frequency line in 2,5-DCP is almost pressure independent and the higher frequency line shows a linear variation with pressure upto about 3·5 kbar but shows a negative pressure coefficient beyond this pressure. The two lines in 3,5-DCP have a non-linear pressure dependence with the curvature changing smoothly with pressure. The pressure coefficient for both lines becomes negative beyond a pressure of 5 kbar. The pressure dependence of the N.Q.R. frequencies is discussed in relation to intra- and inter-molecular contacts. Also, a thermodynamic analysis of the data is carried out to determine the constant volume temperature derivative of the N.Q.R. frequency.
Resumo:
2,6-Lutidine-N-oxide (LNO) complexes of rare-earth bromides of the composition $$MBr_3 .(LNO)_{4_{ - n} } .nH_2 O$$ wheren = l for M = La, Pr, Nd, Sm, Gd, Ho, Er; andn = 0 for M = Y have been prepared and characterised by analyses, conductance and infrared data. Infrared spectra of the complexes indicate that the coordination of ligand to the metal ion takes place through the oxygen of the ligand, and the water molecule in the complexes present is coordinated to the metal. A coordination number of seven has been suggested to all the rare-earth metal ions.
Resumo:
Complexes of 2,6-dimethylpyridine 1-oxide with lanthanide iodides of the formulaeLn(2,6-LTNO)5I3 whereLn=La, Tb and Yb,Ln(2,6-LTNO)4I3 whereLn=Pr and Nd and Er(2,6-LTNO)4.5I3 have been prepared and characterised by chemical analysis, infrared and conductance studies. Infrared and conductance data have been interpreted in terms of dimeric (or polymeric) structures involving bridging amine oxide groups.
Resumo:
In the title compound, C18H21NO3, the 1,4-dihydropyridine ring exhibits a flattened boat conformation. The methoxyphenyl ring is nearly planar [r.m.s. deviation = 0.0723 (1) angstrom] and is perpendicular to the base of the boat [dihedral angle = 88.98 (4)degrees]. Intermolecular N-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds exist in the crystal structure.
Resumo:
In the title compound,C18H13Cl2NO2,the quinoline ring system is almost planar (r.m.s.deviation 0.009 angstrom), and the phenyl and carboxylate planes are twisted away from it by 59.2 (1)and 65.9 (2)degrees,respectively.
Resumo:
The asymmetric unit of the title compound, C20H20ClNO2, contains two crystallographically independent molecules of similar geometry. The piperidine ring adopts a distorted boat conformation in both molecules, in which the N atom assumes an almost planar configuration.
Resumo:
In the title compound, C19H21Cl2NO4, the dihydropyridine ring adopts a flattened boat conformation. The dichlorophenyl ring is oriented almost perpendicular to the planar part of the dihydropyridine ring [dihedral angle = 89.1 (1)degrees]. An intramolecular C-H center dot center dot center dot O hydrogen bond is observed. In the crystal structure, molecules are linked into chains along the b axis by N-H center dot center dot center dot O hydrogen bonds.
Resumo:
In the molecule of the title compound, C20H23NO3, the bulky methoxyphenyl substituents at the equatorial 2,6-positions crowd the vicinity of the equatorial amino H atom and prevent it from forming intermolecular hydrogen bonds. The piperidine ring adopts a distorted chair conformation.
Resumo:
The reactions of halogenocyclotetraphosphazatetraenes N4P4X8, with nucleophiles have received little attention and only the reactions of the octachloride, N4P4Cl8, with amines have been investigated in any detail.1 Millington and Sowerby2 studied the reaction of N4P4Cl8 with dimethylamine and isolated the derivatives, N4P4Cl8-n (NMe2)n, n = 2,3,4,5,6,8;several N-methylanilino derivatives
Resumo:
This paper deals with the reactive sputtering of titanium in an argon and oxygen mixture. The variation in cathode potential as a function of oxygen partial pressure has been explained in terms of cathode poisoning effects. The titania films deposited during this process have been studied for their structural and optical characteristics. The effect of substrate temperature (from 25 to 400 °C) and annealing (from 250 to 700 °C) on the packing density, refractive index, extinction coefficient, and crystallinity has been investigated. The refractive index varied from 2.24 to 2.46 and extinction coefficient from 2.6 × 10-3 to 10.4× 10-3 at 500 nm as the substrate temperature increased from 25 to 400 °C. The refractive index increased from 2.19 to 2.35 and extinction coefficient changed from 3.2× 10-3 to 11.6 × 10-3 at 500 nm as the annealing temperature was increased from 250 to 700 °C. Anatase and rutile phases have been observed in the films deposited at 400 °C substrate temperature and annealed at 300 °C. The changes in the optical constants at higher substrate temperature have been attributed to an increase in packing density, oxygen content, and crystallinity of the films.