46 resultados para 162-987E
Resumo:
Utilizing a circuit model [1, 2] of an induction motor, a simplified analysis of steady state performance of a voltage controlled induction motor (VCIM) drive is described in this paper. By solving a set of nonlinear algebraic equations which describe the VCIM drive under steady operation, the operating variables such as constant components of torque, rotor flux linkages, fundamental components of stator voltage and current and phase angle are obtained for any given value of slip, triggering angle and supply voltage.
Resumo:
High-temperature superconductivity in oxides of the type(La, Ln)2?xBax(Sr)xCuO4, Y(Ln)Ba2Cu3O7??, La3?xBa3+xCu6O14, and related systems is discussed with emphasis on aspects related to experimental solid-state chemistry. All of these oxides possess perovskite-related structures. Oxygen-excess and La-deficient La2CuO4 also exhibit superconductivity in the 20�40 K just as La2?xBax(Srx)CuO4; these oxides are orthorhombic in the superconductivity phase. The crucial role of oxygen stoichiometry in the superconductivity ofYBa2Cu3O7?? (Tc = 95 ± 5K) is examined; this oxide remains orthorhombic up to ? ? 0.6 and becomes tetragonal and nonsuperconducting beyond this value of ?. Oxygen stoichiometry in this and related oxides has to be understood in terms of structure and disorder. The structure of La3?xBa3+xCu6O14 is related to that of YBa2Cu3O7, the orthorhombic structure manifesting itself when the population of O1 oxygens (along the Cusingle bondOsingle bondCu chains) is preponderant compared to that of O5 oxygens (along thea-axis); nearly equal populations of O1 and O5 sites give rise to the tetragonal structure. A transition from a high-Tc (95 K) superconductivity regime to a low-Tc (not, vert, similar60 K) regime occurs in YBa2Cu3O7?? accompanying a change in ?. There is no evidence for Cu3+ in these nominally mixed valent copper oxides. Instead, holes are present on oxygens giving rise to O? or O2?2 species, the concentration of these species increasing with the lowering of temperature. Certain interesting aspects of the superconducting oxides such as domain or twin boundaries, Raman spectra, microwave absorption, and anomalous high-temperature resistivity drops are presented along with the important material parameters. Preparative aspects of the superconducting oxides are briefly discussed. Phase transitions seem to occur atTc as well as at not, vert, similar240 K in YBa2Cu3O7.
Resumo:
The interaction of the protein atoms with the surrounding water oxygen atoms has been computed for 392 protein chains from 369 protein structures belonging to 90% non-homologous high resolution (<= 1.5 angstrom) protein Structures with a crystallographic R-factor <= 20%. The percentage composition of the polar atoms is found to be 36.3%. An average of 82.55% of water oxygen atoms are found to be in the primary hydration shell and 15.12% in the secondary hydration shell. The average Percentage of interactions of water oxygen atoms with the polar atoms of the main chain and side chain are 54% and 46%. respectively. The interaction of the acidic residues, aspartate and glutamate, with the water oxygen atoms is more when compared to that of the other residues.
Resumo:
This correspondence throws some light into the area of easily diagnosable machines. Given the behavior of a sequential machine in terms of a state table it explores the possibilities of designing a structure, that facilitates easy diagnosis of faults. The objective is achieved through structural decomposition which has already claimed to produce simpler physical realization.
Resumo:
By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.
Resumo:
The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel k(S) (z, w) = (1 - z (w) over tilde)(-1) for |z|, |w| < 1, by means of (1/k(S))(T,T*) >= 0, we consider an arbitrary open connected domain Omega in C-n, a complete Pick kernel k on Omega and a tuple T = (T-1, ..., T-n) of commuting bounded operators on a complex separable Hilbert space H such that (1/k)(T,T*) >= 0. For a complete Pick kernel the 1/k functional calculus makes sense in a beautiful way. It turns out that the model theory works very well and a characteristic function can be associated with T. Moreover, the characteristic function is then a complete unitary invariant for a suitable class of tuples T.
Resumo:
Thermal decomposition of ethylene diamine diperchlorate (EDDP) has been studied by differential-thermal analysis (DTA), thermogravimetric analysis (TGA), isothermal weight-loss measurements and mass-spectrometric analysis of the decomposition products. It has been observed that EDDP decomposes in two temperature regions. The low-temperature decomposition stops at about 35 to 40 percent weight loss below 250°C. The reason for the low-temperature cessation may be the adsorption of excess ethylene diamine on the crystal surface of EDDP. An overall activation energy of 54 kcal per mole has been calculated for the thermal decomposition of EDDP. Mass-spectrometric analysis shows that the decomposition products are mainly CO2, H2O, HCl and N2. The following stoichiometry has been proposed for the thermal decomposition of EDDP: (−CH2NH3CIO4)2→2CO2O+2HCl+N2
Resumo:
The performance of a program will ultimately be limited by its serial (scalar) portion, as pointed out by Amdahl′s Law. Reported studies thus far of instruction-level parallelism have mixed data-parallel program portions with scalar program portions, often leading to contradictory and controversial results. We report an instruction-level behavioral characterization of scalar code containing minimal data-parallelism, extracted from highly vectorized programs of the PERFECT benchmark suite running on a Cray Y-MP system. We classify scalar basic blocks according to their instruction mix, characterize the data dependencies seen in each class, and, as a first step, measure the maximum intrablock instruction-level parallelism available. We observe skewed rather than balanced instruction distributions in scalar code and in individual basic block classes of scalar code; nonuniform distribution of parallelism across instruction classes; and, as expected, limited available intrablock parallelism. We identify frequently occurring data-dependence patterns and discuss new instructions to reduce latency. Toward effective scalar hardware, we study latency-pipelining trade-offs and restricted multiple instruction issue mechanisms.
Resumo:
In this paper we associate a new geometric invariant to the space of fiat connections on a G (= SU(2))-bundle on a compact Riemann surface M and relate it tcr the symplectic structure on the space Hom(pi(1)(M), G)/G consisting of representations of the fundamental group pi(1)(M) Of M into G module the conjugate action of G on representations.
Resumo:
The aim of this paper is to develop a computationally efficient decentralized rendezvous algorithm for a group of autonomous agents. The algorithm generalizes the notion of sensor domain and decision domain of agents to enable implementation of simple computational algorithms. Specifically, the algorithm proposed in this paper uses a rectilinear decision domain (RDD) as against the circular decision domain assumed in earlier work. Because of this, the computational complexity of the algorithm reduces considerably and, when compared to the standard Ando's algorithm available in the literature, the RDD algorithm shows very significant improvement in convergence time performance. Analytical results to prove convergence and supporting simulation results are presented in the paper.
Resumo:
A swarm is a temporary structure formed when several thousand honey bees leave their hive and settle on some object such as the branch of a tree. They remain in this position until a suitable site for a new home is located by the scout bees. A continuum model based on heat conduction and heat generation is used to predict temperature profiles in swarms. Since internal convection is neglected, the model is applicable only at low values of the ambient temperature T-a. Guided by the experimental observations of Heinrich (1981a-c, J. Exp. Biol. 91, 25-55; Science 212, 565-566; Sci. Am. 244, 147-160), the analysis is carried out mainly for non-spherical swarms. The effective thermal conductivity is estimated using the data of Heinrich (1981a, J. Exp. Biol. 91, 25-55) for dead bees. For T-a = 5 and 9 degrees C, results based on a modified version of the heat generation function due to Southwick (1991, The Behaviour and Physiology of Bees, PP 28-47. C.A.B. International, London) are in reasonable agreement with measurements. Results obtained with the heat generation function of Myerscough (1993, J. Theor. Biol. 162, 381-393) are qualitatively similar to those obtained with Southwick's function, but the error is more in the former case. The results suggest that the bees near the periphery generate more heat than those near the core, in accord with the conjecture of Heinrich (1981c, Sci. Am. 244, 147-160). On the other hand, for T-a = 5 degrees C, the heat generation function of Omholt and Lonvik (1986, J. Theor. Biol. 120, 447-456) leads to a trivial steady state where the entire swarm is at the ambient temperature. Therefore an acceptable heat generation function must result in a steady state which is both non-trivial and stable with respect to small perturbations. Omholt and Lonvik's function satisfies the first requirement, but not the second. For T-a = 15 degrees C, there is a considerable difference between predicted and measured values, probably due to the neglect of internal convection in the model.
Resumo:
A symmetric cascade of selective pulses applied on connected transitions leads to the excitation of a selected multiple-quantum coherence by a well-defined angle. This cascade selectively operates on the subspace of the multiple-quantum coherence and acts as a generator of rotation selectively on the multiple-quantum subspace. Single-transition operator algebra has been used to explain these experiments. Experiments have been performed on two- and three-spin systems. It is shown that such experiments can be utilized to measure the relaxation times of selected multiple-quantum coherences or of a specifically prepared initial longitudinal state of the spin system.
Resumo:
This paper presents an introduction to neurocomputers and an overview of the history of neurocomputers. Direct implementation methods of neurocomputers using techniques from microelectronics and photonics are discussed. Emulation methods using special-purpose hardware are highlighted. The role of parallel computing systems for improved performance is introduced. Some commercially available neurocomputers and performance issues of such systems are also presented.
Resumo:
The basic concepts and techniques involved in the development and analysis of mathematical models for individual neurons and networks of neurons are reviewed. Some of the interesting results obtained from recent work in this field are described. The current status of research in this field in India is discussed
Resumo:
A new experimental technique is proposed to determine refractive indices of liquids and isotropic solids at different wavelengths. A Pellin-Broca hollow prism filled with a liquid sample produces the spectrum (of the liquid prism) on the photographic plate of the camera. A plane reflector, mounted at a small angle to the normal of the exit face of the prism, also forms a direct image of the collimator slit in the plane of the same photographic plate. All the necessary information for determining the refractive indices (for different wavelengths) is extracted directly from the spectrogram without using any goniometric system. Experiments are conducted with the liquid prisms of isopropyl alcohol, water, and benzene. The results of the experiments are compared with those obtained by a Pulfrich refractometer (critical angle method). The proposed new technique gives the refractive indices for visible and invisible spectral lines to an accuracy of 2x10(-5). (C) 1997 Society of Photo-Optical Instrumentation Engineers.