75 resultados para 152-917
Resumo:
L-Lysine D-glutamate crystallizes in the monoclinic space group P2(1) with a = 4.902, b = 30.719, c = 9.679 A, beta = 90 degrees and Z = 4. The crystals of L-lysine D-aspartate monohydrate belong to the orthorhombic space group P2(1)2(1)2(1) with a = 5.458, b = 7.152, c = 36.022 A and Z = 4. The structures were solved by the direct methods and refined to R values of 0.125 and 0.040 respectively for 1412 and 1503 observed reflections. The glutamate complex is highly pseudosymmetric. The lysine molecules in it assume a conformation with the side chain staggered between the alpha-amino and the alpha-carboxylate groups. The interactions of the side chain amino groups of lysine in the two complexes are such that they form infinite sequences containing alternating amino and carboxylate groups. The molecular aggregation in the glutamate complex is very similar to that observed in L-arginine D-aspartate and L-arginine D-glutamate trihydrate, with the formation of double layers consisting of both types of molecules. In contrast to the situation in the other three LD complexes, the unlike molecules in L-lysine D-aspartate monohydrate aggregate into alternating layers as in the case of most LL complexes. The arrangement of molecules in the lysine layer is nearly the same as in L-lysine L-aspartate, with head-to-tail sequences as the central feature. The arrangement of aspartate ions in the layers containing them is, however, somewhat unusual. Thus the comparison between the LL and the LD complexes analyzed so far indicates that the reversal of chirality of one of the components in a complex leads to profound changes in molecular aggregation, but these changes could be of more than one type.
Resumo:
Third-order nonlinear absorption and refraction coefficients of a few-layer boron carbon nitride (BCN) and reduced graphene oxide (RGO) suspensions have been measured at 3.2 eV in the femtosecond regime. Optical limiting behavior is exhibited by BCN as compared to saturable absorption in RGO. Nondegenerate time-resolved differential transmissions from BCN and RGO show different relaxation times. These differences in the optical nonlinearity and carrier dynamics are discussed in the light of semiconducting electronic band structure of BCN vis-a-vis the Dirac linear band structure of graphene. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We propose a physical mechanism to explain the origin of the intense burst of massive-star formation seen in colliding/merging, gas-rich, field spiral galaxies. We explicitly take account of the different parameters for the two main mass components, H-2 and H I, of the interstellar medium within a galaxy and follow their consequent different evolution during a collision between two galaxies. We also note that, in a typical spiral galaxy-like our galaxy, the Giant Molecular Clouds (GMCs) are in a near-virial equilibrium and form the current sites of massive-star formation, but have a low star formation rate. We show that this star formation rate is increased following a collision between galaxies. During a typical collision between two field spiral galaxies, the H I clouds from the two galaxies undergo collisions at a relative velocity of approximately 300 km s-1. However, the GMCs, with their smaller volume filling factor, do not collide. The collisions among the H I clouds from the two galaxies lead to the formation of a hot, ionized, high-pressure remnant gas. The over-pressure due to this hot gas causes a radiative shock compression of the outer layers of a preexisting GMC in the overlapping wedge region. This makes these layers gravitationally unstable, thus triggering a burst of massive-star formation in the initially barely stable GMCs.The resulting value of the typical IR luminosity from the young, massive stars from a pair of colliding galaxies is estimated to be approximately 2 x 10(11) L., in agreement with the observed values. In our model, the massive-star formation occurs in situ in the overlapping regions of a pair of colliding galaxies. We can thus explain the origin of enhanced star formation over an extended, central area approximately several kiloparsecs in size, as seen in typical colliding galaxies, and also the origin of starbursts in extranuclear regions of disk overlap as seen in Arp 299 (NGC 3690/IC 694) and in Arp 244 (NGC 4038/39). Whether the IR emission from the central region or that from the surrounding extranuclear galactic disk dominates depends on the geometry and the epoch of the collision and on the initial radial gas distribution in the two galaxies. In general, the central starburst would be stronger than that in the disks, due to the higher preexisting gas densities in the central region. The burst of star formation is expected to last over a galactic gas disk crossing time approximately 4 x 10(7) yr. We can also explain the simultaneous existence of nearly normal CO galaxy luminosities and shocked H-2 gas, as seen in colliding field galaxies.This is a minimal model, in that the only necessary condition for it to work is that there should be a sufficient overlap between the spatial gas distributions of the colliding galaxy pair.
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
A series of rhodium(III) complexes of certain hydroxyimino-beta-diketones were synthesised and their structures assigned on the basis of elemental analyses and i.r. and1H n.m.r. spectral studies, The complexes exhibit coordination through carbonyl oxygen and nitrogen of the hydroxy-imino groups in the ligands.1H and13C n.m.r. studies show that the ligands exist in the isonitroso form in CDCl3.
Resumo:
Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete “2D-Teflon” CF phase being thermodynamically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.
Resumo:
IEEE 802.16 standards for Wireless Metropolitan Area Networks (WMANs) include a mesh mode of operation for improving the coverage and throughput of the network. In this paper, we consider the problem of routing and centralized scheduling for such networks. We first fix the routing, which reduces the network to a tree. We then present a finite horizon dynamic programming framework. Using it we obtain various scheduling algorithms depending upon the cost function. Next we consider simpler suboptimal algorithms and compare their performances.
Resumo:
Natural convection from an isothermal vertical surface to a thermally stratified fluid is studied numerically. A wide range of stratification levels is considered. It is shown that at high levels of ambient thermal stratification, a portion at the top of the plate absorbs heat, while a horizontal plume forms around a location where the plate temperature equals the ambient temperature. The plume is shown to be inherently unsteady, and its transient nature is investigated in detail. The effect of the temperature defect in striating the plume is discussed. Average Nusselt number data are presented for Pr = 6.0 and 0.7.
Resumo:
The general equation for one-dimensional wave propagation at low flow Mach numbers (M less-than-or-equals, slant0·2) is derived and is solved analytically for conical and exponential shapes. The transfer matrices are derived and shown to be self-consistent. Comparison is also made with the relevant data available in the literature. The transmission loss behaviour of conical and exponential pipes, and mufflers involving these shapes, are studied. Analytical expressions of the same are given for the case of a stationary medium. The mufflers involving conical and exponential pipes are shown to be inferior to simple expansion chambers (of similar dimensions) at higher frequencies from the point of view of noise abatement, as was observed earlier experimentally.
Resumo:
A low temperature aqueous solution preparation under strong alkaline medium is reported for the synthesis of bismuth cuprates. Highly crystalline products were obtained at temperatures around 90 degrees C. Tetragonal Bi2CuO4 appears to be the only stable phase formed in the Bi-Cu-O system under these conditions.
Resumo:
1. Habitat selection is a universal aspect of animal ecology that has important fitness consequences and may drive patterns of spatial organisation in ecological communities. 2. Measurements of habitat selection have mostly been carried out on single species and at the landscape level. Quantitative studies examining microhabitat selection at the community level are scarce, especially in insects. 3. In this study, microhabitat selection in a natural assemblage of cricket species was examined for the first time using resource selection functions (RSF), an approach more commonly applied in studies of macrohabitat selection. 4. The availability and differential use of six microhabitats by 13 species of crickets inhabiting a tropical evergreen forest in southern India was examined. The six available microhabitats included leaf litter-covered ground, tree trunks, dead logs, brambles, understorey and canopy foliage. The area offered by the six microhabitats was estimated using standard methods of forest structure measurement. Of the six microhabitats, the understorey and canopy accounted for approximately 70% of the total available area. 5. The use of different microhabitats by the 13 species was investigated using acoustic sampling of crickets to locate calling individuals. Using RSF, it was found that of 13 cricket species examined, 10 showed 100% selection for a specific microhabitat. Of these, two species showed fairly high selection for brambles and dead logs, which were rare microhabitats, highlighting the importance of preserving all components of forest structure.
Resumo:
A new polymer electrolyte (PEG)(x) NH4ClO4(x = 5, 10, 15, 20) has been prepared that shows protonic conduction. The room temperature conductivities are of the order of 10(-7) S/cm, and increase with decrease in salt concentration. NMR line width studies indicate fairly low glass transition temperatures of the polymer salt complexes.
Resumo:
Lanthanum doped lead titanate (PLT) thin films were identified as the most potential candidates for the pyroelectric and memory applications. PLT thin films were deposited on Pt coated Si by excimer laser ablation technique. The polarization behavior of PLT thin films has been studied over a temperature range of 300 K to 550 K. A universal power law relation was brought into picture to explain the frequency dependence of ac conductivity. At higher frequency region ac conductivity of PLT thin films become temperature independent. The temperature dependence of ac conductivity and the relaxation time is analyzed in detail. The activation energy obtained from the ac conductivity was attributed to the shallow trap controlled space charge conduction in the bulk of the sample. The impedance analysis for PLT thin films were also performed to get insight of the microscopic parameters, like grain, grain boundary, and film-electrode interface etc. The imaginary component of impedance Z" exhibited different peak maxima at different temperatures. Different types of mechanisms were analyzed in detail to explain the dielectric relaxation behavior in the PLT thin films.