453 resultados para bismuth copper oxides
Resumo:
A mild and convenient oxidative transformation of secondary alcohols to 1,5-disubstituted tetrazoles is uncovered by employing trimethylsilyl azide (TMSN3) as a nitrogen source in the presence of a catalytic amount of copper(II) perchlorate hexahydrate Cu(ClO4)(2)(.)6H(2)O] (5mol%) and 2,3-dichloro-5,6-dicyano-para-benzoquinone (DDQ) (1.2equiv.) as an oxidant. This reaction is performed under ambient conditions and proceeds through CC bond cleavage.
Resumo:
We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.
Resumo:
Transparent glasses in CaO-Bi2O3-B2O3 system were fabricated via the conventional melt-quenching technique. X-ray powder diffraction (XRD) and differential thermal analysis (DTA) carried out on the as-quenched samples confirmed their amorphous and glassy nature respectively. The surface crystallization behaviour of these glasses with and without ultrasonic surface treatment (UST) was monitored using XRD, optical microscopy and scanning electron microscopy (SEM). The volume fraction, depth of crystallization and the (001) orientation factor for the heat treated samples with and without UST were compared. The ultrasonically-treated samples on subsequent heat treatment were found to crystallize at lower temperatures associated with the highest degree of orientation factor (0.95) in contrast with those of non-UST samples. These surface crystallized glasses were found to exhibit nonlinear optical behaviour emitting green light (532 nm) when they were exposed to the infrared radiation (1064 nm) using Nd:YAG laser.
Resumo:
We present the application of a bismuth modified exfoliated graphite electrode in the detection of arsenic in water. Bismuth film was electrodeposited onto an exfoliated graphite (EG) electrode at a potential of -600 mV. The modification of EG resulted in an increase in the electroactive surface area of the electrode and consequently peak current enhancement in Ru(NH3)(6)(2+/13+) redox probe. Square wave anodic stripping voltammetry was performed with the modified electrode (EG-Bi) in As (III) solutions at the optimum conditions of pH 6, deposition potential of -600 mV and pre-concentration time of 180s. The EG-Bi was able to detect As (III) to the limit of 5 mu g L-1 and was not susceptible to many interfering cations except Cu (II). The EG-Bi is low cost and easy to prepare. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
To understand Cr emissions from slag melts to a vapor phase, an assessment of the stabilities of the chromium oxides at high temperatures has been carried out. The objective of the present study is to present a set of consistent data corresponding to the thermodynamic properties of the oxides of chromium, with special reference to the emission of hexavalent chromium from slags. In the current work, critical analysis of the experimental data available and a third analysis in the case of Cr2O3 have been carried out. Commercial databases, Fact Sage and ThermoCalc along with NIST-JANAF Thermochemical Tables, have been used for the analysis and comparisons of the results that are presented. The significant discrepancies in the available data have been pointed out. The data from NIST-JANAF Thermochemical Tables have been found to provide a set of consistent data for the various chromium oxides. An Ellingham diagram and the equations for the Delta G degrees (standard Gibbs free energy change) of formation of CrOx have been proposed. The present analysis shows that CrO3(g) is likely to be emitted from slag melts at high oxygen partial pressures. (C) The Minerals, Metals & Materials Society and ASM International 2014
Resumo:
Ferrocene-conjugated copper(II) complexes Cu(Fc-aa)(aip)](ClO4) (1-3) and (Cu(Fc-aa)(pyip)](ClO4) (4-6) of L-amino acid reduced Schiff bases (Fc-aa), 2-(9-anthryl)-1H-imidazo4,5-f]1,10]phenanthroline (aip) and 2-(1-pyrenyl)-1H-imidazo4,5-f] 1,10]phenanthroline (pyip), where Fc-aa is ferrocenylmethyl-L-tyrosine (Fc-Tyr in 1, 4), ferrocenylmethyl-L-tryptophan (Fc-Trp in 2, 5) and ferrocenylmethyl-L-methionine (Fc-Met in 3, 6), were prepared and characterized, and their photocytotoxicity was studied (Fc = ferrocenyl moiety). Phenyl analogues, viz. (Cu(Ph-Met)(aip)](ClO4) (7) and (Cu(Ph-Met)(pyip)](ClO4) (8), were prepared and used as control compounds. The bis-imidazophenanthroline copper(II) complexes, viz. (Cu(aip)(2)(NO3)](NO3) (9) and Cu(pyip)(2)(NO3)](NO3) (10), were also prepared and used as controls. Complexes 1-6 having a redox inactive cooper(II) center showed the Fc(+)-Fc redox couple at similar to 0.5 V vs. SCE in DMF-0.1 mol (Bu4N)-N-n](ClO4). The copper(II)-based d-d band was observed near 600 nm in DMF-Tris-HCl buffer (1 :1 v/v). The ferrocenyl complexes showed low dark toxicity, but remarkably high photocytotoxicity in human cervical HeLa and human breast adenocarcinoma MCF-7 cancer cells giving an excellent photo-dynamic effect while their phenyl analogues were inactive. The photo-exposure caused significant morphological changes in the cancer cells when compared to the non-irradiated ones. The photophysical processes were rationalized from the theoretical studies. Fluorescence microscopic images showed 3 and 6 localizing predominantly in the endoplasmic reticulum (ER) of the cancer cells, thus minimizing any undesirable effects involving nuclear DNA.
Resumo:
A novel colorimetric probe 1 based on the picolyl moiety has been designed and synthesized. Probe 1 is composed of a pyrene and a bispicolyl amine (BPA) unit, in which the BPA moiety acts as a binding unit and the binding phenomenon is sensed from the changes in the signaling subunit. The probe detects Cu2+ specifically in water and both Cu2+ and Hg2+ efficiently in neutral Brij-58 micellar media. The probe shows a color change visible to the naked eye upon addition of metal ions. Notably, in a micellar medium, probe 1 can detect both the Cu2+ and Hg2+ ions even at parts-per-billion levels. Furthermore, the probe shows ratiometric detection of both the metal ions making the sensing quantitative. The two metal ions could be discriminated both visibly under a UV lamp and with the use of fluorescence spectroscopy. The probe could be also used in biological cell lines for the detection of both Hg2+ and Cu2+ ions.
Resumo:
Copper-catalyzed, ligand-promoted decarboxylative coupling of readily available a,fi-unsaturated acids with sodium aryl sulfinates is presented. This method provides a new avenue for the synthesis of vinyl sulfones via a decarboxylative radical coupling strategy by employing a catalytic amount of Cu(ClO4)(2)center dot 6H(2)O, TBHP in decane as an oxidant, and 1,10-phenanthroline as a ligand. The salient feature of this method is that it furnishes exclusively the (E)-isomer.
Resumo:
We report the synthesis and structural characterization of a polymeric ternary copper-cytosine-phenanthroline complex, Cu-4(phen)(3)-(mu(3)-cyt)(2)(mu-OH)(cyt)(OH)Cl-3](n)center dot 16H(2)O, where three cytosine ligands with different binding sites have simultaneously complexed to the four copper metal centres. Interestingly, the complex exhibits two different coordination geometries around the metal centres.
Resumo:
A new type of copper(II) complex, CuL(phen)(2)](NO3) (CuIP), where L ((E)-N'-(2-oxoindolin-3-ylidene) benzohydrazide) is a N donor ligand and phen is the N, N-donor heterocyclic 1,10-phenanthroline, has been synthesized. The phenyl carbohydrazone conjugated isatin-based ligand L and CuIP were characterized by elemental analysis, infrared, UV-Vis, H-1 and C-13 NMR and ESI-mass spectral data, as well as single-crystal X-ray diffraction. The interaction of calf thymus DNA (CT DNA) with L and CuIP has been investigated by absorption, fluorescence and viscosity titration methods. The complex CuIP displays better binding affinity than the ligand L. The observed DNA binding constant (K-b = 4.15(+/- 0.18) x 10(5) M-1) and binding site size (s = 0.19), viscosity data together with molecular docking studies of CuIP suggest groove binding and/or a partial intercalative mode of binding to CT DNA. In addition, CuIP shows good binding propensity to the bovine serum albumin (BSA) protein, giving a K-BSA value of 1.25(+/- 0.24) x 10(6) M-1. In addition, the docking studies on DNA and human serum albumin (HSA) CuIP interactions are consistent with the consequence of binding experiments. The in vitro anti-proliferative study establishes the anticancer potency of the CuIP against the human cervical (HeLa) and breast (MCF7) cancer cells; noncancer breast epithelial (MCF10a) cells have also been investigated. CuIP shows better cytotoxicity and sensitivity towards cancer cells over noncancer ones than L under identical conditions, with the appearance of apoptotic bodies. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The study of models for ``metal-enzyme-substrate'' interaction has been a proactive area of research owing to its biological and pharmacological importance. In this regard the ternary copper uracil complex with 1,10-phenanthroline represents metal-enzyme-substrate system for DNA binding enzymes. The synthesis of the complex, followed by slow evaporation of the reaction mixture forms two concomitant solvatomorph crystals viz., {Cu(phen)(mu-ura)(H2O)](n)center dot H2O (1a)} and {Cu(phen)(mu-ura)(H2O)](n)center dot CH3OH (1b)}. Both complexes are structurally characterized, while elemental analysis, IR and EPR spectra were recorded for 1b (major product). In both complexes, uracil coordinates uniquely via N1 and N3 nitrogen atom acting as a bidentate bridging ligand forming a 1-D polymer. The two solvatomorphs were quantitatively analyzed for the differences with the aid of Hirshfeld surface analysis. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R (3) over barm) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn3+ and low spin configuration for Ru4+ where the itinerant electrons occupy a pi*-band. The onset of a net maximum in the chi vs. T plot at 9.5 K and the negative value of the Weiss constant (theta) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn3+ and Ru4+ are partially oxidized to Mn4+ and Ru5+ in the sloping region at low voltage, while in the long plateau, O2- is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to cycle acceptably even with the participation of the O2- ligand in the reversible redox processes. In the Li3FeRuO5 oxide, the oxidation process appears to affect only Ru (4+ to 5+ in the sloping region) and O2- (plateau) while Fe seems to retain its 3+ state.
Resumo:
The synthesis of the heterobinuclear copper-zinc complex CuZn(bz)(3)(bpy)(2)]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 angstrom. The complex is normal paramagnetic having mu(eff) value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants A(av) = 63 x 10(-4) cm(-1), characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g(parallel to) = 2.254 and g(perpendicular to) =2.071 and A(parallel to) = 160 x 10(-4) cm(-1). The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Monoclinic nanocuboid WO3 enhanced the photocatalyst efficiency of quasi nanobelt zinc oxide for dye degradation in the presence of visible light radiation. Combustion synthesized ZnO resulted in a belt-like morphology through in situ cluster formation of near spherical particles but homogenously disperses and strongly adheres to nanocuboid WO3 during physical mixing. Cationic methylene blue (MB) and anionic orange G (OG) undergo degradation through a charge transfer mechanism in the presence of WO3-ZnO (1 : 9 weight percentage ratio) mixture. The photocatalytic reaction was enhanced due to the reduction in the recombination of photogenerated electron-holes. The high degree of 90% degradation of both dyes is due to the activity of the mixed oxides, which is much higher than that obtained either with WO3 or ZnO individually.
Resumo:
Monoclinic nanocuboid WO3 enhanced the photocatalyst efficiency of quasi nanobelt zinc oxide for dye degradation in the presence of visible light radiation. Combustion synthesized ZnO resulted in a belt-like morphology through in situ cluster formation of near spherical particles but homogenously disperses and strongly adheres to nanocuboid WO3 during physical mixing. Cationic methylene blue (MB) and anionic orange G (OG) undergo degradation through a charge transfer mechanism in the presence of WO3-ZnO (1 : 9 weight percentage ratio) mixture. The photocatalytic reaction was enhanced due to the reduction in the recombination of photogenerated electron-holes. The high degree of 90% degradation of both dyes is due to the activity of the mixed oxides, which is much higher than that obtained either with WO3 or ZnO individually.