511 resultados para SEMICONDUCTOR-DOPED GLASSES
Correlations between mechanical and photoluminescence properties in Eu doped sodium bismuth titanate
Resumo:
Nanoindentation technique is utilized to examine mechanical property variation in Eu doped Na0.5Bi0.5 TiO3 (NBT). Doping levels of Eu in NBT is systematically varied. Dilute doping results in a linear reduction in both modulus and hardness. At higher concentrations, a recovery of the mechanical properties (to undoped NBT values) is observed. These experimental trends mirror variations in the optical emission intensities with Eu concentration. Observed trends are rationalized on the basis of a model, which hypothesizes phase segregation beyond a critical Eu doping level. Such segregation leads to the formation of pure NBT, nano-Eu saturated NBT, and nano-mixed Eu oxides in the microstructure. Pure NBT is optically inactive, while saturated Eu:NBT is a much better emitter when compared to europium oxide. Hence beyond the critical concentration, luminescence signal comes primarily from the saturated Eu:NBT phase. The model presented is supported by nanoindentation, and spectroscopic results. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
CaSiO3 nano-ceramic powder doped with Pr3+ has been prepared by solution combustion method. The powder Ca0.5Pr0.05SiO3 is investigated for its dielectric and electrical properties at room temperature to study the effect of doping. The sample is characterized by X-ray diffraction and infrared spectroscopy. The size of either of volume elements of CaSiO3:Pr3+ estimated from transmission electron microscopy is about 180-200 nm. The sample shows colossal dielectric response at room temperature. This colossal dielectric behaviour follows Debye-type relaxation and can be explained by Maxwell-Wagner (MW) polarization. However, analysis of impedance and electric modulus data using Cole-Cole plot shows that it deviates from ideal Debye behaviour resulting from the distribution of relaxation times. The distribution in the relaxation times may be attributed to existence of electrically heterogeneous grains, insulating grain boundary, and electrode contact regions. Doping, thus, results in substantial modifications in the dielectric and electrical properties of the nano-ceramic CaSiO3. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A combined mechanism involving phononic and electronic processes is suggested for superconductivity in substitutionally doped graphene. The electronic mechanism is similar to the one used for doped fullerene system, MxC60 (M K, Rb, etc.) and triggered by bond polarization due to doped impurities such as B or Al. It is found that on increasing the doping, the superconducting critical temperature can be raised to room temperature. The details of the combined model are given along with the predicted values of T-c. (C) 2013 Elsevier Ltd. All rights reserved,
Resumo:
Topological defects play an important role in the melting phenomena in two-dimensions. In this work, we report experimental observation of topological defect induced melting in two-dimensional electron systems (2DES) in the presence of strong Coulomb interaction and disorder. The phenomenon is characterised by measurement of conductivity which goes to zero in a Berezinskii-Kosterlitz-Thouless like transition. Further evidence is provided via low-frequency conductivity noise measurements.
Resumo:
We present the study of low-frequency noise, or 1/f noise, in degenerately doped Si: P and Ge: P delta-layers at low temperatures. For the Si: P d-layers we find that the noise is several orders of magnitude lower than that of bulk Si: P systems in the metallic regime and is one of the lowest values reported for doped semiconductors. Ge: P d-layers as a function of perpendicular magnetic field, shows a factor of two reduction in noise magnitude at the scale of B-phi, where B-phi is phase breaking field. We show that this is a characteristic feature of universal conductance fluctuations.
Resumo:
The effect of Sr doping in CeO2 for its use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs) has been explored here. Ce1-xSrxO2-delta (x = 0.05-0.2) are successfully synthesized by citrate-complexation method. XRD, Raman, FT-IR, FE-SEM/EDX and electrochemical impedance spectra are used for structural and electrical characterizations. The formation of well crystalline cubic fluorite structured solid solution is observed for x = 0.05 based on XRD and Raman spectra. For compositions i.e., x > 0.05, however, a secondary phase of SrCeO3 is confirmed by the peak at 342 cm(-1) in Raman spectra. Although the oxygen ion conductivity was found to decrease with increase in x, based on ac-impedance studies, conductivity of Ce0.95Sr0.05O2-delta was found to be higher than of Ce0.95Gd0.1O2-delta and Ce0.8Gd0.2O2-delta. The decrease in conductivity of Ce1-xSrxO2-delta with increasing dopant concentration is ascribed to formation of impurity phase SrCeO3 as well as the formation of neutral associated pairs, Se `' Ce V-o. The activation energies are found to be 0.77, 0.83, 0.85 and 0.90 eV for x = 0.05, 0.1, 0.15 and 0.20, respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Micro-Raman studies are conducted on as-quenched and annealed Ge15Te80 -_xIn5Agx glasses to probe the structural network and its evolution with composition. These studies reveal the presence of tetrahedral GeTe4 structural units in as-quenched samples. Specific signatures of the intermediate phase (IP) are observed in the composition dependence of Raman frequencies and corresponding intensities of different modes in the composition range, 8 <= x <= 16. In addition, the Raman peak positions are found to shift with silver doping. Apart from the Raman results, the compositional dependence of density, molar volume and thermal diffusivity, observed in the present study, confirms the presence of the intermediate phase. In thermally annealed samples, a unique variation of Raman wave-numbers in the intermediate region is observed due to the retention of some of the local structure even after the sample is crystallized. The observed Raman peaks are attributed to crystalline tellurium and silver lattice vibrational modes. Based on our present and earlier studies, we propose the occurrence of three thresholds in Ge15Te80 - xIn5Agx glasses, namely percolation of rigidity, percolation of stress and the onset of chemical phase separation on a nanoscale at 8%, 16% and 20% of silver concentration respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Full solar spectrum absorbers are widely pursued for applications related to photocatalysis and photovoltaics. Here we report multivalent Cu-doped ZnO nanoparticles which exhibit full solar spectrum absorbance and high photoactivity. Metathesis-based, green-chemical approaches with synthesis yield of similar to 100% are used. Cu incorporation in ZnO results in an increase of average solar spectrum absorbance from a mere 0.4% to 34%. On the other hand, (Zn, Cu)0 composites result in materials with up to 64% average solar spectrum absorbance. Doped systems operate well under both visible and UV illumination. The nanomaterials prepared are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). Photocatalysts explored have particle sizes >= 50 nm. This is deliberately done in order to avoid the nanotoxic size regime of ZnO. Despite the large particle size and low specific surface area (<20 m(2).g(-1)), the best catalyst reported here compare favorably with recent reports on ZnO based systems. Using X-photoelectron spectroscopy and synthesis property correlations, we infer that the presence of multivalent Cu (most likely in the form of Cu1+delta) on ZnO surface is responsible for the observed photoactivity enhancement.
Resumo:
Bulk Ge15Te85-xIn5Agx glasses are shown to exhibit electrical switching with switching/threshold voltages in the range of 70-120V for a sample thickness of 0.3 mm. Further, the samples exhibit threshold or memory behavior depending on the ON state current. The compositional studies confirm the presence of an intermediate phase in the range 8 <= x <= 16, revealed earlier by thermal studies. Further, SET-RESET studies have been performed by these glasses using a triangular pulse of 6 mA amplitude (for SET) and 21 mA amplitude (for RESET). Raman studies of the samples after the SET and RESET operations reveal that the SET state is a crystalline phase which is obtained by thermal annealing and the RESET state is the glassy state, similar to the as-quenched samples. It is interesting to note that the samples in the intermediate phase, especially compositions at x = 10, 12, and 14 withstand more set-reset cycles. This indicates compositions in the intermediate phase are better suited for phase change memory applications. (C) 2014 AIP Publishing LLC.
Resumo:
This work explores the preparation of nanocrystalline Cr3+ (1-5 mol%) doped CaSiO3 phosphors by solution combustion process and study of its photoluminescence (PL) behavior. The nanopowders are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-red (FTIR) spectroscopy. PXRD results confirm monoclinic phase upon calcination at 950 degrees C for 3 h. SEM micrographs indicates that the powder is highly porous and agglomerated. The TEM images show the powder to consist of spherical shaped particles of size similar to 30-60 nm. Upon 323 nm excitation, the emission profile of CaSiO3:Cr3+ exhibits a narrow red emission peak at 641 nm due to E-2 -> (4)A(2) transition and broad band at 722 nm due to T-4(2g) -> (4)A(2g). It is observed that PL intensity increases with increase in Cr3+ concentration and highest PL intensity is observed for 3 mol% doped sample. The PL intensity decreases with further increase in Cr3+ doping. This decrease in PL intensity beyond 3 mol% is ascribed to concentration quenching. Racah parameters are calculated to describe the effects of electron-electron repulsion within the crystal lattice. The parameters show 21% reduction in the Racah parameter of free ion and the complex, indicating the moderate nephelauxetic effect in the lattice. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
CaTiO3:Sm3+ (1-11 mol%) nanophosphors were successfully synthesized by a low temperature solution combustion method LCS]. The structural and morphological properties of the phosphors were studied by using Powder X-ray diffractometer (PXRD), Fourier transform infrared (FTIR), X-ray photo electron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM). TEM studies indicate that the size of the phosphor is similar to 20-35 nm. Photoluminescence (PL) properties of Sm3+ (1-11 mol%) doped CaTiO3 for NUV excitation (407 nm) was studied in order to investigate the possibility of its use in White light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm3+, such as (4)G(5/2) -> H-6(5/2) (561 nm), (4)G(5/2) -> H-6(7/2) (601-611 nm), (4)G(5/2) -> H-6(9/2) (648 nm) and (4)G(5/2) -> H-6(11/2) (703 nm) respectively. Further, the emission at 601-611 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for the application for near ultra violet (NUV) excitation. Thermoluminescence (TL) of the samples irradiated with gamma source in the dose range 100-500 Gy was recorded at a heating rate of 5 degrees C s(-1). Two well resolved glow peaks at 164 degrees C and 214 degrees C along with shouldered peak at 186 degrees C were recorded. TL intensity increases up to 300 Gy and thereafter, it decreases with further increase of dose. The kinetic parameters namely activation energy (E), frequency factor (s) and order of kinetics were estimated and results were discussed in detail. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Transparent glasses in CaO-Bi2O3-B2O3 system were fabricated via the conventional melt-quenching technique. X-ray powder diffraction (XRD) and differential thermal analysis (DTA) carried out on the as-quenched samples confirmed their amorphous and glassy nature respectively. The surface crystallization behaviour of these glasses with and without ultrasonic surface treatment (UST) was monitored using XRD, optical microscopy and scanning electron microscopy (SEM). The volume fraction, depth of crystallization and the (001) orientation factor for the heat treated samples with and without UST were compared. The ultrasonically-treated samples on subsequent heat treatment were found to crystallize at lower temperatures associated with the highest degree of orientation factor (0.95) in contrast with those of non-UST samples. These surface crystallized glasses were found to exhibit nonlinear optical behaviour emitting green light (532 nm) when they were exposed to the infrared radiation (1064 nm) using Nd:YAG laser.
Resumo:
Here, we present the results of temperature dependent dielectric studies on chemical solution processed Zr-doped BiFeO3 (BFO) thin films deposited on Pt/Si substrates. We find that in contrast to the undoped BFO films, Zr doping at Fe-site suppresses the low frequency dielectric relaxation originating from the grain boundaries, attributed to the increased dipolar rigidity due to stronger Zr-O bonds. Temperature dependent dc conductivity obtained from impedance and modulus analyses shows two distinct conduction processes occurring inside the grains. At temperature below similar to 423K, conductivity is nearly temperature independent, while in the high temperature regime (above similar to 423K), conduction is governed by the long range movement of oxygen vacancies with an activation energy of similar to 1eV. (C) 2014 AIP Publishing LLC.
Resumo:
Hydroxyapatite (HA) is widely being researched for hard tissue replacement for its good osseointegration and biocompatibility property. However, the inferior antibacterial property of HA often results in infection at host site, and this leads to rejection of the implant. The antibacterial property of silver (Ag) is well known and in the past decade or so, the application of Ag is reinvented in medicinal applications like catheters, vascular grafts and orthopaedic implants. In this respect, the present work reports the synthesis of Ag doped HA using hot pressing in argon atmosphere. This work also reports the effect of HA-Ag composition on bacterial colonisation during in vitro study. The bactericidal property of Ag doped HA has been investigated against magnetotactic bacteria, a `magnetite' containing bacteria. Magnetotactic bacteria were seeded onto pellets, and the adhesion of bacteria was evaluated using scanning electron microscopy. It was confirmed that incorporation of Ag in HA leads to improved bactericidal property.
Resumo:
Nanosized cerium and nitrogen co-doped TiO2 (Ce-TiO2-xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N-2 adsorption and desorption methods, photoluminescence and ultraviolet-visible (UV-vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in -3 state in Ce-TiO2-xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce-O-Ti interface and also inhibits Ce particles from sintering. UV-visible DRS studies show that the metal-metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ -> Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron-hole pair separation between the two interfaces Ce-TiO2-xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce-TiO2-xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce-TiO2-xNx was due to the participation of MMCT and interfacial charge transfer mechanism.