422 resultados para Polymer-solutions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corona discharges resulting from the metal parts of insulators and the line hardware affect the long term performance of the polymeric insulators used for outdoor application and can lead to its eventual failure. The authors previous work, involved in developing a new methodology to evaluate the performance of polymeric shed materials subjected to corona stresses in the presence of natural fog condition, results revealed more surface hydroxylation thereby resulting in more loss of hydropobhicity. With the increase in industrialization, there is an increase in acidic component of the rain as well as the fog (moisture). The present work, reports the effect of acid fog on the corona performance of the polymeric insulators for both AC and DC excitation, interesting results are obtained. A comparison of the experimental investigations revealed that the acidic fog has more effect than that of the normal fog. This fact has been confirmed by physico-chemical analysis like the scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) and contact angle measurement. The effect of DC corona is found to be lesser in comparison with the AC; however the hydroxylation induced by the DC corona under the presence of fog is similar with that of AC excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81 degrees to 87 degrees whereas GO decreased it to 77 degrees. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016.