410 resultados para Pressure plate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, a low pressure transition around P similar to 3 GPa exhibited by the A(2)B(3)-type 3D topological insulators is attributed to an electronic topological transition (ETT) for which there is no direct evidence either from theory or experiments. We address this phase transition and other transitions at higher pressure in bismuth selenide (Bi2Se3) using Raman spectroscopy at pressure up to 26.2 GPa. We see clear Raman signatures of an isostructural phase transition at P similar to 2.4 GPa followed by structural transitions at similar to 10 GPa and 16 GPa. First-principles calculations reveal anomalously sharp changes in the structural parameters like the internal angle of the rhombohedral unit cell with a minimum in the c/a ratio near P similar to 3 GPa. While our calculations reveal the associated anomalies in vibrational frequencies and electronic bandgap, the calculated Z(2) invariant and Dirac conical surface electronic structure remain unchanged, showing that there is no change in the electronic topology at the lowest pressure transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of applied pressure on reactive hot pressing (RHP) of zirconium (Zr):graphite (C) in molar ratios of 1:0.5, 1:0.67, 1:0.8, and 1:1 was studied at 1200 degrees C for 60 min. The relative density achievable increased with increasing pressure and ranged from 99% at 4 MPa for ZrC0.5 to 93% for stoichiometric ZrC at 100 MPa. The diminishing influence of pressure on the final density with increasing stoichiometry is attributed to two causes: the decreasing initial volume fraction of the plastically deforming Zr metal which leads to the earlier formation of a contiguous, stress shielding carbide skeleton and the larger molar volume shrinkage during reaction which leads to pore formation in the final stages. A numerical model of the creep densification of a dynamically evolving microstructure predicts densities that are consistent with observations and confirm that the availability of a soft metal is primarily responsible for the achievement of such elevated densification during RHP. The ability to densify nonstoichiometric compositions like ZrC0.5 at pressures as low as 4 MPa offers an alternate route to fabricating dense nonstoichiometric carbides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inverse coupled dependence of electrical conductivity and thermopower on carrier concentration presents a big challenge in achieving a high figure of merit. However, the simultaneous enhancement of electrical conductivity and thermopower can be realized in practice by carefully engineering the electronic band structure. Here by taking the example of Bi2S3, we report a simultaneous increase in both electrical conductivity and thermopower under hydrostatic pressure. Application of hydrostatic pressure enables tuning of electronic structure in such a way that the conductivity effective mass decreases and the density of states effective mass increases. This dependence of effective masses leads to simultaneous enhancement in electrical conductivity and thermopower under n-type doping leading to a huge improvement in the power factor. Also lattice thermal conductivity exhibits very weak pressure dependence in the low pressure range. The large power factor together with low lattice thermal conductivity results in a high ZT value of 1.1 under n-type doping, which is nearly two times higher than the previously reported value. Hence, this pressure-tuned behaviour can enable the development of efficient thermoelectric devices in the moderate to high temperature range. We further demonstrate that similar enhancement can be observed by generating chemical pressure by doping Bi2S3 with smaller iso-electronic elements such as Sb at Bi sites, which can be achieved experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials are very useful in structural engineering particularly in weight sensitive applications. Two different test models of the same structure made from composite materials can display very different dynamic behavior due to large uncertainties associated with composite material properties. Also, composite structures can suffer from pre-existing imperfections like delaminations, voids or cracks during fabrication. In this paper, we show that modeling and material uncertainties in composite structures can cause considerable problein in damage assessment. A recently developed C-0 shear deformable locking free refined composite plate element is employed in the numerical simulations to alleviate modeling uncertainty. A qualitative estimate of the impact of modeling uncertainty on the damage detection problem is made. A robust Fuzzy Logic System (FLS) with sliding window defuzzifier is used for delamination damage detection in composite plate type structures. The FLS is designed using variations in modal frequencies due to randomness in material properties. Probabilistic analysis is performed using Monte Carlo Simulation (MCS) on a composite plate finite element model. It is demonstrated that the FLS shows excellent robustness in delamination detection at very high levels of randomness in input data. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational and experimental tools have been used to understand the linear cluster plug nozzle flowfield for a range of pressure ratios. The experimental cluster configuration is arrived at from a linear plug nozzle by introducing splitter plates in the primary nozzle, and computational analysis of corresponding geometry is also carried out. The flow development on the plug surface has been analyzed for two different cluster module spacings. The interactions between the cluster module jets is a complex one with a three-dimensional shock structure because of the differential end condition the shock experiences on the plug wall and freejet boundary. A prominent streamwise vorticity resulting from curvature of the shock is also seen along the length of the plug downstream of the module junctions. The out-of-phase wave interactions occurring along the module centerline and the splitter plate centerline, resulting in a wavy surface-limiting streamline pattern, particularly at lower pressure ratios, is explained.