855 resultados para Metallurgy.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Détermination de l'activité du calcium par la méthode d'effusion de Knudsen. Calcul, à partir de la distribution mesurée pour l'aluminium entre l'alliage et du fer pur, de l'activité de l'aluminium dans des alliages riches en calcium. Détermination en combinant les deux méthodes, des activités des deux composants et de l'énergie de Gibbs de mélange pour tout le domaine de composition. Calcul et analyse du facteur de structure concentration-concentration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Void breaking and formation in a packed bed are important phenomena in stabilising and optimising the performance of reactors such as the blast furnace, spouted bed and catalytic regenerator. These phenomena have been studied using a mathematical model. The model is based on a previously published force balance approach to predict the cavity size. Limited numbers of experiments, at room temperature, have been carried out in order to compare the experimental results with theory. A good agreement has been found between the experimental and theoretical results. In addition, the predictions have been compared with published data, which give reasonable agreement. The role of various forces (friction, pressure and bed weight) on void initiation and breaking has been investigated. The effect of bed height, particle diameter and density, void fraction, as well as gas flow rate on void formation and breaking has also been studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our concern here is to rationalize experimental observations of failure modes brought about by indentation of hard thin ceramic films deposited on metallic substrates. By undertaking this exercise, we would like to evolve an analytical framework that can be used for designs of coatings. In Part I of the paper we develop an algorithm and test it for a model system. Using this analytical framework we address the issue of failure of columnar TiN films in Part II [J. Mater. Res. 21, 783 (2006)] of the paper. In this part, we used a previously derived Hankel transform procedure to derive stress and strain in a birefringent polymer film glued to a strong substrate and subjected to spherical indentation. We measure surface radial strains using strain gauges and bulk film stresses using photo elastic technique (stress freezing). For a boundary condition based on Hertzian traction with no film interface constraint and assuming the substrate constraint to be a function of the imposed strain, the theory describes the stress distributions well. The variation in peak stresses also demonstrates the usefulness of depositing even a soft film to protect an underlying substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slag foaming under dynamic conditions has been studied in laboratory scale to examine the influence of properties commonly used to describe the foaminess and foam stability of slags under steady-state conditions. Synthetically produced slags with compositions relevant to tool steel and stainless steel production were studied through X-ray equipment in measurements simulating the dynamic conditions found in real processes. It is found that the dynamic systems display a more complex behavior than systems Under steady state. Traditional theories for foaming do not seem to be valid for slag foaming under dynamic conditions. The foam displays a fluctuating behavior, which the presently available models are not able to take into account. The concept of a foaming index does not seem to be applicable, resulting in the need for alternative models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present article, slag foaming phenomenon under dynamic conditions is critically analyzed on the basis of the results of high-temperature X-ray image analysis experiments. The results indicate that the mismatch between the gas generation rate and gas escape rate has a serious impact on the foam height. This mismatch is attributed to the chemical reaction rate, which has to be considered in modeling slag foaming under dynamic conditions. The results further imply that a critical ratio of bubble size/crucible size exists, where wall effects are likely to become prominent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe3+, 98% of Fe2+ and Zn2+ and 95% Cu2+ uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe2+, 89% Zn2+ and 75% Cu2+ bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1 M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the results of transmission electron microscopy (TEM) study, carried out on a hot-pressed TiB2-20 wt.%MoSi2 composite. One of the important microstructural observations includes the detection of crystalline TiSi2 at triple grain junctions. The densification mechanism is discussed, based on experimental observations and thermodynamic analysis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials with high thermal conductivity and thermal expansion coefficient matching with that of Si or GaAs are being used for packaging high density microcircuits due to their ability of faster heat dissipation. Al/SiC is gaining wide acceptance as electronic packaging material due to the fact that its thermal expansion coefficient can be tailored to match with that of Si or GaAs by varying the Al:SiC ratio while maintaining the thermal conductivity more or less the same. In the present work, Al/SiC microwave integrated circuit (MIC) carriers have been fabricated by pressureless infiltration of Al-alloy into porous SiC preforms in air. This new technique provides a cheaper alternative to pressure infiltration or pressureless infiltration in nitrogen in producing Al/SiC composites for electronic packaging applications. Al-alloy/65vol% SiC composite exhibited a coefficient of thermal expansion of 7 x 10(-6) K-1 (25 degrees C-100 degrees C) and a thermal conductivity of 147 Wm(-1) K-1 at 30 degrees C. The hysteresis observed in thermal expansion coefficient of the composite in the temperature range 100 degrees C-400 degrees C has been attributed to the presence of thermal residual stresses in the composite. Thermal diffusivity of the composite measured over the temperature range from 30 degrees C to 400 degrees C showed a 55% decrease in thermal diffusivity with temperature. Such a large decrease in thermal diffusivity with temperature could be due to the presence of micropores, microcracks, and decohesion of the Al/SiC interfaces in the microstructure (all formed during cooling from the processing temperature). The carrier showed satisfactory performance after integrating it into a MIC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a constant effort to understand the defect structure and diffusion behavior in intermetallic compounds with the A15 structure. Diffusion of elements in intermetallic compounds depends mainly on antisites and vacancies on different sublattices. In this article, we shall discuss the diffusion of elements in A(3)B compounds with the A15 structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influences of the amorphous matrix and crystalline dendrite phases on the hardness and elastic moduli of Zr/Ti-based bulk metallic glass matrix composites have been assessed. While the moduli of the composites correspond to those predicted by the rule of mixtures, the hardness of the composites is similar to that of the matrix, suggesting that the plastic flow in the composites under constrained conditions such as indentation is controlled by the flow resistance of the contiguous matrix. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study of interdiffusion in the Co-Mo system is important to understand the performance of turbine blades in jet engine applications. Mo is added to superalloys to increase the solid solution strengthening and the creep resistance. In this study, the interdiffusion coefficient in the Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined. Further, the activation energy and pre-exponential factors are calculated, which provide an idea about the atomic mechanism of diffusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three phase equilibrium between alloy, spinel solid solution and α-alumina in the Fe-Ni-Al-O system has been fully characterized at 1823K as a function of alloy composition using both experimental and computational methods. The oxygen potential was measured using a solid state cell incorporating yttria-doped thoria as the electrolyte and Cr+ Cr2O3 as the reference electrode. Oxygen concentration of the alloy was determined by an inert gas fusion technique. The composition of the spinel solid solution, formed at the interface between the alloy and an alumina crucible, was determined by EPMA. The variation of the oxygen concentration and potential and composition of the spinel solid solution with mole fraction of nickel in the alloy have been computed using activities in binary Fe-Ni system, free energies of formation of end member spinels FeO•(1+x)Al2O3 and NiO•(1+x)Al2O3 and free energies of solution of oxygen in liquid iron and nickel, available in the literature. Activities in the spinel solid solution were computed using a cation distribution model. The variation of the activity coefficient of oxygen with alloy composition in Fe-Ni-O system was calculated using both the quasichemical model of Jacob and Alcock and the Wagner's model, with the correlation of Chiang and Chang. The computed results for the oxygen potential and the composition of the spinel solid solution are in good agreement with the measurements. The measured oxygen concentration lies between the values computed using models of Wagner and Jacob and Alcock. The results of the study indicate that the deoxidation hyper-surface in multicomponent systems can be computed with useful accuracy using data for end member systems and thermodynamic models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nb3Sn growth following the bronze technique, (i.e. by interdiffusion between Cu(Sn) alloy (bronze) and Nb) is one of the important methodologies to produce this superconductor. In this study, we have addressed the confusion over the growth rate of the Nb3Sn phase. Furthermore, a possible explanation for the corrugated layer in the multifilamentary structure is discussed. Kirkendall marker experiments were conducted to study the relative mobilities of the species, which also explained the reason for finding pores in the product phase layer. Based on the parabolic growth constant at different temperatures, the activation energy for the growth is determined. We have further explained the dramatic increase in the growth rate of the prod

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase diagram studies show that at ambient pressure only one ternary oxide, Cu(2)Ln(2)O(5), is stable in the ternary systems Cu-Ln-O (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu) at high temperatures. The crystal structure of Cu(2)Ln(2)O(5) can be described as a zig-zag arrangement of one-dimensional Cu2O5 chains parallel to-the a-axis with Ln atoms occupying distorted octahedral sites between these chains. Four sets of emf measurements on Gibbs energy of formation of Cu(2)Ln(2)O(5) (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu; Y) from component binary oxides and one set of high-temperature solution calorimetric data on enthalpy of formation have been reported in the literature. Except for Cu2Y2O5, the measured values for the Gibbs energies of formation of all other Cu(2)Ln(2)O(5) compounds fall in a narrow band (+/-1 kJ mol(-1)) and indicate a regular increase in stability with decreasing ionic radius of the lanthanide ion. The values for the second law enthalpy of formation, derived from the temperature dependence of emf obtained in different studies, show larger differences, as high as 25 kJ mol(-1) for Cu2Tm2O5. Though associated with an uncertainty of +/-4 kJ mol(-1), the calorimetric measurements help to identify the best set of emf data. The trends in thermodynamic data correlate well with the global instability index (GII) based on the overall deviation from the valence sum rule. Low values for the index calculated from crystallographic information indicate higher stability. Higher values are indicative of the larger stress in the structure.