476 resultados para Maladies complexes
Resumo:
New ternary copper (II) complexes, Cu(L-orn)(B)(Cl)](Cl center dot 2H(2)O) (1-2) where L-orn is L-ornithine, B is an N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1) and 1,10-phenanthroline (phen, 2), were synthesized and characterized by various spectroscopic techniques. Complex 2 is characterized by the X-ray single crystallographic method. The complex shows a distorted square-pyramidal (4 + 1) CuN3OCl coordination sphere. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. Complex 2 shows appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA). The complexes were subjected to in vitro cytotoxicity studies against carcinomic human alveolar basal epithelial cells (A-549) and human epithelial (HEp-2) cells. The IC50 values of 1 and 2 are less than that of cisplatin against HEp-2 cell lines. MIC values for 1 against the bacterial strains Streptococcus mutans and Pseudomonas aeruginosa are 0.5 mM. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Polypyridyl platinum(II) complexes (1-5), viz., Pt(pyphen)Cl]Cl (1), Pt(pyphen)(C CFc)]Cl (2), Pt(pydppz)Cl]Cl (3), Pt(pydppz)(C CPh)]Cl (4) and Pt(pydppz)(C CFc)]Cl (5), where pyphen is 6-(2-pyridyl)-1,10-phenanthroline, pydppz is 6-(2-pyridyl)-dipyrido-3,2-a:2',3'-c]-phenazine, FcC CH is ferrocenyl acetylene and PhC CH is phenyl acetylene, were synthesized, characterized and their DNA binding and photocytotoxic properties studied. The complexes showed strong binding affinity to calf-thymus DNA giving K-app of similar to 10(6)-10(7) M-1. Complexes 4 and 5 showed dual mode of binding to ct-DNA. The pydppz complexes 3-5 having a photoactive phenazine moiety showed photocytotoxicity in HeLa and MCF-7 cells in UV-A light of 365 nm with apoptotic cell death as evidenced from the acridine orange/ethidium bromide dual staining and the FACS data. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
In the present investigation, a Schiff base N'(1),N'(3)-bis(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-d icarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant K-b of 2.6 x 10(4) M-1, 5.7 x 10(4) M-1 and 4.5 x 10(4) M-1, respectively and they exhibited potent photo-damage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report here the synthesis and characterization of a few phenolate-based ligands bearing tert- amino substituent and their Zn(II) and Cu(II) metal complexes. Three mono/binuclear Zn(II) and Cu(II) complexes Zn(L1)(H2O)].CH3OH.H2O (1) (H (2) L1 = 6,6(')-(((2-dimethylamino)ethylazanediyl)bis(methylene))bis(2, 4-dimethylphenol), Zn-2(L2)(2)] (2) (H (2) L2 = 2,2(')-(((2-dimethylamino)ethyl)azanediyl)bis(methylene)bis(4- methylphenol) and Cu-2(L3)(2).CH2 Cl-2] (3) (H (2) L3 = (6,6(')-(((2-(diethylamino)ethyl)azanediyl)bis(methylene)) bis(methylene))bis(2,4-dimethylphenol) were synthesized by using three symmetrical tetradendate ligands containing N2O2 donor sites. These complexes are characterized by a variety of techniques including; elemental analysis, mass spectrometry, H-1, C-13 NMR spectroscopic and single crystal X-ray analysis. The new complexes have been tested for the phosphotriesterase (PTE) activity with the help of P-31 NMR spectroscopy. The P-31 NMR studies show that mononuclear complex Zn(L1)(H2O)].CH3OH.H2O (1) can hydrolyse the phosphotriester i.e., p-nitrophenyl diphenylphosphate (PNPDPP), more efficiently than the binuclear complexes Zn-2(L2)(2)] (2) and Cu-2(L3)(2).CH2Cl2] (3). The mononuclear Zn(II) complex (1) having one coordinated water molecule exhibits significant PTE activity which may be due to the generation of a Zn(II)-bound hydroxide ion during the hydrolysis reactions in CHES buffer at pH 9.0.
Resumo:
Lanthanide complexes have recently received considerable attention in the field of therapeutic and diagnostic medicines. Among many applications of lanthanides, gadolinium complexes are used as magnetic resonance imaging (MRI) contrast agents in clinical radiology and luminescent lanthanides for bioanalysis, imaging and sensing. The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin. Photodynamic therapy (PDT) is a non-invasive treatment modality of cancer using a photosensitizer drug and light. This review primarily focuses on different aspects of the chemistry of lanthanide complexes showing photoactivated DNA cleavage activity and cytotoxicity in cancer cells. Macrocyclic texaphyrin-lanthanide complexes are known to show photocytotoxicity with the PDT effect in near-IR light. Very recently, non-macrocyclic lanthanide complexes are reported to show photocytotoxicity in cancer cells. Attempts have been made in this perspective article to review and highlight the photocytotoxic behaviour of various lanthanide complexes for their potential photochemotherapeutic applications.
Resumo:
Four dinuclear bis(mu-Cl) bridged copper(II) complexes, Cu-2(mu-Cl)(2)(L-X)(2)](ClO4)(2) (L-X = N,N-bis(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine with X = H(1), OMe(2), Me(3) and Cl(4)), have been synthesized and characterized by the single crystal X-ray diffraction method. In these complexes, each copper(II) center is penta-coordinated with square-pyramidal geometry. In addition to the tridentate L-X ligand, a chloride ion occupies the last position of the square plane. This chloride ion is also bonded to the neighboring Cu(II) site in its axial position forming an SP-I dinuclear Cu(II) unit that exhibits small intramolecular ferromagnetic interactions and supported by DFT calculations. The complexes 1-3 exhibit methylmonooxygenase (pMMO) behaviour and oxidise 4-tert-butylcatechol (4-TBCH2) with molecular oxygen in MeOH or MeCN to 4-tert-butyl-benzoquinone (4-TBQ), 5-methoxy-4-tert-butyl-benzoquinone (5-MeO-4-TBQ) as the major products along with 6,6'-Bu-t-biphenyl-3,4,3',4'-tetraol and others as minor products. These are further confirmed by ESI- and FAB-mass analyses. A tentative catalytic cycle has been framed based on the mass spectral analysis of the products and DFT calculations on individual intermediates that are energetically feasible.
Resumo:
Three new copper-azido complexes Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(6)(L-2)(2)(H2O)(2)] (2), and Cu-4(N-3)(6)(L-3)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with N-methylethylenediamine, HL2 and HL3 are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine and N-ethylethylenediamine respectively] have been synthesized by using 0.5 molar equivalents of the Schiff base ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes contains very similar Cu-4(II) building blocks. While 1 and 3 have overall 1D structures, 2 forms discrete tetranuclear clusters due to blocking of two coordination sites on the tetranuclear cluster by water molecules. Magnetic susceptibility measurements over a wide range of temperatures exhibit the presence of both antiferromagnetic and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional and two different basis sets) have been performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.
Resumo:
In an effort to develop new MOCVD precursors, mixed-ligand metal-organic complexes, bis (acetylacetonato-k(2)O,O') (2,2'-bipyridine-k(2)N,N') magnesium(II), and his (acetylacetonato-k(2)O,O') (1,10-phenanthroline-k(2)N,N') magnesium(II) were synthesized. Spectroscopic characterization and crystal structures confirmed them to be monomeric and stable complexes. Crystal structure analysis suggests in each of the magnesium(II) complexes, the metal center has a distorted octahedral coordination geometry. Thermo-gravimetric analysis (TGA/DTA) suggests that these complexes are volatile and thermally stable. The thermal characteristics of newly designed complexes make them attractive precursors for MOCVD applications. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Neutral and cationic copper bis(thiosemicarbazone) complexes bearing methyl, phenyl, and hydrogen, on the diketo-backbone of the ligand have been synthesized. All of them were characterized by spectroscopic methods and in three cases by X-ray crystallography. In vitro cytotoxicity studies revealed that they are cytotoxic unlike the corresponding zinc complexes. Copper complexes Cu(GTSC) and Cu(GTSCHCl) derived from glyoxal-bis(4-methyl-4-phenyl-3-thiosemicarbazone) (GTSCH(2)) are the most cytotoxic complexes against various human cancer cell lines, with a potency similar to that of the anticancer drug adriamycin and up to 1000 fold higher than that of the corresponding zinc complex. Tritiated thymidine incorporation assay revealed that Cu(GTSC) and Cu(GTSCHCl) inhibit DNA synthesis substantially. Cell cycle analyses showed that Cu(GTSC) and Cu(GTSCHCl) induce apoptosis in HCT116 cells. The Cu(GTSCHCl) complex caused distinct DNA cleavage and Topo II alpha inhibition unlike that for Cu(GTSC). In vivo administration of Cu(GTSC) significantly inhibits tumor growth in HCT116 xenografts in nude mice.
Resumo:
The syntheses and characterization of some new mixed-ligand nickel(II) complexes {Ni(L-1)(PPh3)] (1), Ni(L-1)(Py)] (2), Ni(L-2)(PPh3)]center dot DMSO (3), Ni(L-2)(Imz)] (4), Ni(L-3)(4-pic)] (5) and RNi(L-3))(2)(mu-4,4'-byp)]center dot 2DMSO (6)1 of three selected thiosemicarbazones the 4-(p-X-phenyl)thiosemicarbazones of salicylaldehyde) (H2L1-3) (A, Scheme 1) are described in the present study, differing in the inductive effect of the substituent X (X = F, Br and OCH3), in order to observe its influence, if any, on the redox potentials and biological activity of the complexes. All the synthesized ligands and the metal complexes were successfully characterized by elemental analysis, IR, UV-Vis, NMR spectroscopy and cyclic voltammetry. The molecular structures of four mononuclear (1-3 and 5) and one dinuclear (6) Ni(II) complex have been determined by X-ray crystallography. The complexes have been screened for their antibacterial activity against Escherichia coli and Bacillus. The minimum inhibitory concentrations of these complexes and their antibacterial activities indicate that compound 4 is the potential lead molecule for drug designing. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Four novel mononuclear Pd(II) complexes have been synthesized with the biologically active Schiff base ligands (L-1-L-4) derived from 3-amino-2-methyl-4(3H)-quinazolinone. The structure of the complexes has been proposed by elemental analysis, molar conductance, IR, H-1 NMR, mass, UV-Vis spectrometric and thermal studies. The investigation of interaction of the complexes with calf thymus DNA (CT-DNA) has been performed with absorption and fluorescence spectroscopic studies. The nuclease activity was done using pUC19 supercoiled DNA by gel-electrophoresis. All the ligands and their Pd(II) complexes have also been screened for their antibacterial activity by discolor diffusion technique. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
New metal complexes of the type M(nih)(L)](PF6)(n)center dot xAH(2)O and M(nih)(2)](PF6)center dot xH(2)O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline (phen)/or 2,2' bipyridine (bpy), nih = 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone, n = 2 or 1 and x = 3 or 2) have been synthesized and characterized by elemental analysis, magnetic, IR and H-1 NMR spectral data. The electronic and magnetic moment 2.97-3.07 B.M. data infers octahedral geometry for all the complexes. The IR data reveals that Schiff base (nih) form coordination bond with the metal ion through azomethine-nitrogen, phenolic-oxygen and carbonyl-oxygen in a tridentate fashion. In addition, DNA-binding properties of these six metal complexes were investigated using absorption spectroscopy, viscosity measurements and thermal denaturation methods. The results indicated that the nickel(II) complex strongly bind with calf-thymus DNA with intrinsic DNA binding constant K-b value of 4.9 x 10(4) M-1 for (3), 4.2 x 10(4) M-1 for (4), presumably via an intercalation mechanism compared to cobalt(III) complex with K-b value of 4.6 x 10(4) M-1 (1) and 4.1 x 10(4) M-1 (2). The DNA Photoclevage experiment shows that, the complexes act as effective DNA cleavage agent. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A comprehensive study of D-Na center dot center dot center dot A (D = H/F) complexes has been done using advanced ab initio and atoms in molecule (AIM) theoretical analyses. The correlation between electron density at bond critical point and binding energy gives a distinguishing feature for hydrogen bonding, different from the `electrostatic complexes' formed by LiD and NaD. Moreover, the LiD/NaD dimers have both linear and anti-parallel minima, as expected for electrostatic dipole-dipole interactions. The HF dimer has a quasi-linear minimum and the anti-parallel structure is a saddle point. Clearly, characterizing hydrogen bonding as `nothing but electrostatic interaction between two dipoles' is grossly in error.
Resumo:
Oxovanadi um(IV) complexes VO(Fc-pic)(acac)](ClO4) (1), VO(Fc-pic)(cur)](ClO4) (2), VO(Ph-pic)(acac)](ClO4) (3) and VO(Ph-pic)(cur)](ClO4) (4), where Fc-pic and Ph-pic are ferrocenylmethyl-bis-(2-pyridylmethylamine) (in 1, 2) and bis-(2-pyridylmethyl)benzylamine (in 3, 4), respectively, acac is acetylacetonate anion (in 1, 3) and cur is curcumin anion (in 2, 4) were prepared, characterized and their photo-induced DNA cleavage and anticancer activity studied. The crystal structure of 1 as its PF6 salt (1a) shows the presence of a VO2+ moiety in VO3N3 coordination geometry. The complexes show a d-d band at similar to 790 nm in DMF and display V(IV)/V(III) redox couple near -1.45 V vs. SCE in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA. Complex 2 efficiently photo-cleaves plasmid DNA in near-IR light of 785 nm forming (OH)-O-center dot radicals. The curcumin complexes show photocytotoxicity in HeLa cancer cells in visible light of 400-700 nm with significant cellular uptake within 4 h of incubation time.
Resumo:
Copper(II) complexes of ferrocene(Fc)-conjugated reduced Schiff base of L-tyrosine (Fc-TyrH), viz., Cu(Fc-Tyr)(L)](ClO4), where L is 1,10-phenanthroline (phen, 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq, 2), dipyrido3,2-a:2',3'-c]phenazine (dppz, 3) and 2-(naphthalen-1-yl)-1H-imidazo4,5-f]1,10]phenanthroline (nip, 4), were prepared and tested for their photocytotoxicity in cancer cells. Cu(Fc-Phe)(phen)](-ClO4) (5) of L-phenylalanine and Cu(Ph-Tyr)(L)(ClO4)] of the reduced Schiff base Ph-TyrH derived from benzaldehyde and L-tyrosine having phen (6) and dppz (7), and Cu(Ph-Phe)(phen)(ClO4)] (8) using L-phenylalanine were prepared and used as controls. Complexes 5 and 6 were structurally characterized by X-ray crystallography. A copper(II)-based d-d band near 600 nm and a ferrocenyl band at similar to 450 nm were observed in DMF-Tris-HCI buffer (1:4 v/v) in respective complexes. The complexes are photocleavers of pUC19 DNA in visible light forming (OH)-O-center dot radicals. They are cytotoxic in HeLa (human cervical cancer) and MCF-7 (human breast cancer) cells showing an enhancement of cytotoxicity in visible light. Fluorescence imaging shows nuclear localization of the complexes.