414 resultados para Electrode materials
Resumo:
Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models.
Resumo:
When one starts to analyze the evolution of the interfacial reaction product layers between dissimilar materials it is often found out that as the number of interacting species grows, the complexity of the analysis increases extremely rapidly. It may even appear that the task is just too difficult to be completed. In this article we present the thermodynamic-kinetic method, which can be used to rationalize the evolution of interfacial reaction layers and bring back the physics to the analyses. The method is conceptually very simple. It combines energetics-what can happen-with kinetics-how fast things take place. Yet the method is flexible enough that it can utilize quantitative and qualitative data starting from the atomistic simulations up to the experiments carried out with bulk materials. Several examples about how to utilize this method in material scientific problems are given.
Resumo:
A poly(Nile blue) modified glassy carbon electrode (PNBMGCE) was fabricated by electropolymerisation of Nile blue (NB) monomer using cyclic voltammetry (CV) and was used for the determination of paracetamol (ACOP), tramadol (TRA) and caffeine (CAF). The electrochemical investigations showed that PNB - film formed on the surface of glassy carbon electrode (GCE) improved the electroactive surface area and displayed a remarkable increase in the peak current and a substantial decrease in over potential of ACOP, TRA and CAF when compared to bare GCE. The dependence of peak current and potential on pH, sweep rate and concentration were also investigated at the surface of PNBMGCE. It showed good sensitivity and selectivity in a wide linear range from 2.0 x 10(-7) to 1.62 x 10(-5) M, 1.0 x 10(-6) to 3.1 x 10(-4) M and 8.0 x 10(-7) to 2.0 x 10(-5) M, with detection limits of 0.08, 0.5 and 0.1 mu M, for ACOP, TRA and CAF, respectively. The PNBMGCE was also successfully applied for the determination of ACOP, TRA and CAF in pharmaceutical dosage forms. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Layered composite samples of lithium-rich manganese oxide (Li1.2Mn0.6Ni0.2O2) are prepared by a reverse microemutsion route employing a soft polymer template and studied as a positive electrode material. The product samples possess dual porosity with distribution of pores at 3.5 and 60 nm. Pore volume and surface area decrease on increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity value of the samples prepared at 800 and 900 degrees C is about 240 mA h g(-1) at a specific current of 25 mA g(-1) with a good cycling stability. The composite sample heated at 900 degrees C possesses a high rate capability with a discharge capacity of 100 mA h g(-1) at a specific current of 500 mA g(-1). The high rate capability is attributed to porous nature of the composite sample.
Resumo:
This study reports a multinuclei in situ (real-time) NMR spectroscopic characterization of the electrochemical reactions of a negative Cu3P electrode toward lithium. Taking advantage of the different nuclear spin characteristics, we have obtained real-time P-31 and Li-7 NMR data for a comprehensive understanding of the electrochemical mechanism during the discharge and charge processes of a lithium battery. The large NMR chemical shift span of P-31 facilitates the observation of the chemical evolutions of different lithiated and delithiated LixCu3-xP phases, whereas the quadrupolar line features in Li-7 enable identification of asymmetric Li sites. These combined NMR data offer an unambiguous identification of four distinct LixCu3-xP phases, Cu3P, Li0.2Cu2.8P, Li2CuP, and. Li3P, and the characterization of their involvement in the electrochemical reactions. The NMR data led us to propose a delithiation process involving the intercalation of metallic Cu-0 atomic aggregates into the Li2CuP structure to form a Cu-0-Li2-xCu1-xP phase. This process might be responsible for the poor capacity retention in Cu3P lithium batteries when cycled to a low voltage.
Resumo:
Recent advancements of material science and its applications have been immensely influenced by the modern development of organic luminescent materials. Among all organic luminogens, boron containing compounds have already established their stature as one of the indispensable classes of luminescent dyes. Boron, in its various forms e. g. triarylboranes, borate dyes and boron clusters, has attracted considerable attention owing to its several unique and excellent photophysical features. In very recent times, beyond the realms of solution-state studies, luminescent boron-containing compounds have emerged as a large and versatile class of stimuli responsive materials. Based on several fundamental concepts of chemistry, researchers have come up with an admirable variety of boron-containing materials with AIE (aggregation-induced emission), mechano-responsive luminescence, thermoresponsive-luminescence as well as a number of purely organic phosphorescent materials and other standalone examples. The unique chemical as well as physical properties of boron-containing compounds are largely responsible for the development of such materials. In this review these new findings are brought together.
Resumo:
Applications of hydriding materials for solid state hydrogen storage, hydrogen compression, thermal energy storage and sorption heating and cooling systems have been demonstrated successfully. However, the performance of these devices significantly depends upon heat and mass transfer characteristics of the reactive packed beds. One of the important parameters regulating heat and mass transfer in the hydriding bed is its effective thermal conductivity (ETC), which is dependent on several operating parameters such as pressure and temperature. ETC also varies significantly due to the variation of hydrogen concentration during the hydriding and dehydriding processes. Based on the extensive studies done by the authors on ETC of metal hydride beds, a review of experimental methods, mathematical studies and augmentation techniques is presented in this paper, with emphasis on the effects of operating parameters on ETC. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Small size actuators (8 mm x 1 mm), IPMNC (RuO2/Nafion) and IPMNC (LbL/CNC) are studied for flapping at the frequency of insects and compared to Platinum IPMC-Pt. Flapping wing actuators based on IPMNC (RuO2/Nafion) are modeled with the size of three dragonfly species. To achieve maximum actuation performance with Sympetrum Frequens scale actuator with optimized Young's modulus, the effect of variation of thickness of electrode and Nafion region of Sympetrum Frequens scale actuator is studied. A trade-off in the electrode thickness and Young's modulus for dragonfly size IPMNC-RuO2/Nafion actuator is essential to achieve the desirable flapping performance.