410 resultados para C template metaprogramming
Resumo:
Using a recently proposed Ginzburg-Landau-like lattice free energy functional due to Banerjee et al. (2011) we calculate the fluctuation diamagnetism of high -T-c superconductors as a function of doping, magnetic field and temperature. We analyse the pairing fluctuations above the superconducting transition temperature in the cuprates, ranging from the strong phase fluctuation dominated underdoped limit to the more conventional amplitude fluctuation dominated overdoped regime. We show that a model where the pairing scale increases and the superfluid density decreases with underdoping produces features of the observed magnetization in the pseudogap region, in good qualitative and reasonable quantitative agreement with the experimental data. In particular, we explicitly show that even when the pseudogap has a pairing origin the magnetization actually tracks the superconducting dome instead of the pseudogap temperature, as seen in experiment. We discuss the doping dependence of the `onset' temperature for fluctuation diamagnetism and comment on the role of vortex core -energy jn our model. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
In this study, the influence of the spatial and temporal variability of upwelling intensity and the associated biological productivity observed during different phases of summer monsoon along the southwestern continental margin of India (SWCMI) on the delta C-13 and delta O-18 of the inorganic biogenic carbonate shells was investigated. Multispecies benthic bivalve shells (1-5 mm) separated from ten surface sediment samples of SWCMI (off 12 degrees N, 10 degrees N and 9 degrees N) collected during the onset (OSM) and peak (PSM) phase of the summer monsoon of 2009 were analysed for delta C-13 and delta O-18. Sea surface temperature along the study region indicates prominent upwelling in PSM than in OSM. A comparison of analytical and predicted values for delta O-18 in the bivalve shells confirmed their in situ origin during both the sampling periods. During PSM, the delta C-13 values in the benthic bivalve shells were more depleted in C-13 than during OSM which recorded lower values of delta C-13 in dissolved inorganic carbon of bottom waters expected in the study region in PSM due to the upwelled waters, high surface productivity and the associated high degradation of the organic matter in the subsurface and bottom waters. However, this depletion of delta C-13 was not observed in benthic bivalve shells obtained from 10 degrees N, since it is influenced by high export fluxes of carbon from the Cochin estuary since early monsoon months.
Resumo:
Chronic hepatitis C virus (HCV) infection represents a major health threat to global population. In India, approximately 15-20% of cases of chronic liver diseases are caused by HCV infection. Although, new drug treatments hold great promise for HCV eradication in infected individuals, the treatments are highly expensive. A vaccine for preventing or treating HCV infection would be of great value, particularly in developing countries. Several preclinical trials of virus-like particle (VLP) based vaccine strategies are in progress throughout the world. Previously, using baculovirus based system, we have reported the production of hepatitis C virus-like particles (HCV-LPs) encoding structural proteins for genotype 3a, which is prevalent in India. In the present study, we have generated HCV-LPs using adenovirus based system and tried different immunization strategies by using combinations of both kinds of HCV-LPs with other genotype 3a-based immunogens. HCV-LPs and peptides based ELISAs were used to evaluate antibody responses generated by these combinations. Cell-mediated immune responses were measured by using T-cell proliferation assay and intracellular cytokine staining. We observed that administration of recombinant adenoviruses expressing HCV structural proteins as final booster enhances both antibody as well as T-cell responses. Additionally, reduction of binding of VLP and JFH1 virus to human hepatocellular carcinoma cells demonstrated the presence of neutralizing antibodies in immunized sera. Taken together, our results suggest that the combined regimen of VLP followed by recombinant adenovirus could more effectively inhibit HCV infection, endorsing the novel vaccine strategy. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Gadolinium oxide (Gd2O3) nanotubes of micron length and average diameter 100 nm have been synthesized by a controlled template-assisted electrochemical deposition technique. Structure and morphology of the synthesized nanotubes have been well characterized by using microscopy and spectroscopy analyses. HRTEM and XRD analysis revealed the crystalline planes of Gd2O3 nanotubes. Magnetic measurements of the aligned Gd2O3 nanotubes have been performed for both parallel and perpendicular orientations of the magnetic field with respect to the axis of the Gd2O3 nanotube array. Large bifurcation in ZFC-FC over the regime of 2-320 K without any signature of long range magnetic ordering confirms the presence of SPM clusters in Gd2O3 nanotubes. Also, large magnetocaloric effect is observed in the cryogenic temperature regime. No anisotropy is seen at the low temperature region but is found to evolve with temperature and becomes significant 300 K. These nanotubes can be considered as promising candidates for magnetic refrigeration at cryogenic temperature. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Layered composite samples of lithium-rich manganese oxide (Li1.2Mn0.6Ni0.2O2) are prepared by a reverse microemutsion route employing a soft polymer template and studied as a positive electrode material. The product samples possess dual porosity with distribution of pores at 3.5 and 60 nm. Pore volume and surface area decrease on increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity value of the samples prepared at 800 and 900 degrees C is about 240 mA h g(-1) at a specific current of 25 mA g(-1) with a good cycling stability. The composite sample heated at 900 degrees C possesses a high rate capability with a discharge capacity of 100 mA h g(-1) at a specific current of 500 mA g(-1). The high rate capability is attributed to porous nature of the composite sample.