539 resultados para AC85-4
Resumo:
Three new hydroxymethyl-linked non-natural disaccharide analogues, containing an additional methylene group in between the glycosidic linkage, were synthesized by utilizing 4-C-hydroxymethyl-alpha-D-glucopyranoside as the glycosyl donor. A kinetic study was undertaken to assess the hydrolytic stabilities of these new disaccharide analogues toward acid-catalyzed hydrolysis, at 60 degrees C and 70 degrees C. The studies showed that the disaccharide analogues were stable, by an order of magnitude, than naturally-occurring disaccharides, such as, cellobiose, lactose, and maltose. The first order rate constants were lower than that of methyl glycosides and the trend of hydrolysis rate constants followed that of naturally-occurring disaccharides. alpha-Anomer showed faster hydrolysis than the beta-anomer and the presence of axial hydroxyl group also led to faster hydrolysis among the disaccharide analogues. Energy minimized structures, derived through molecular modeling, showed that dihedral angles around the glycosidic bond in disaccharide analogues were nearly similar to that of naturally-occurring disaccharides. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The local structural information in the near-neighbor region of superionic conducting glass (AgBr)0.4(Ag2O)0.3(GeO2)0.3 has been estimated from the anomalous X-ray scattering (AXS) measurements using Ge and Br K absorption edges. The possible atomic arrangements in the near-neighbor region of this glass were obtained by coupling the results with the least-squares variational method so as to reproduce two differential intensity profiles for Ge and Br as well as the ordinary scattering profile. The coordination number of oxygen around Ge is found to be 3.6 at a distance of 0.176 nm, suggesting the GeO4 tetrahedral unit as the probable structural entity in this glass. Moreover, the coordination number of Ag around Br is estimated as 6.3 at a distance of 0.284 nm, suggesting an arrangement similar to that in crystalline AgBr.
Resumo:
In order to identify the dominant mechanism of ionic conduction, the electrical conductivity and ionic mobility of the glasses (AgX)0.4(Ag2O)0.3(GeO2)0.3 (X = I, Br, Cl) were measured separately in the temperature range from 293 to 393 K by coupling the AC technique with the TIC method. Electronic conductivity was also measured at 293 K by the Wagner polarization method. The total electrical conductivity of these glasses was found to be as high as 10-1 Ω-1 m-1, and the mobility about 10-6 m2 V-1 s-1. The variation of total electrical conductivity and mobility at constant temperature and composition with the type of halide occurred in the sequence, Cl < Br < I. For each composition, both conductivity and mobility increased with temperature. The mobile ion concentration was found to be about 1023 m-3 at 293 K, and it was insensitive to the type of halide as well as temperature. The results suggest that the change in ionic conductivity with the temperature and the type of halide present is mainly attributable to the change in ionic mobility rather than carrier concentration. Moreover, the electronic conductivity was found to be about 10-6 Ω-1 m-1 at 293 K. Thus, the electronic contribution to the total conductivity is negligibly small.
Resumo:
Recently in, a framework was given to construct low ML decoding complexity Space-Time Block Codes (STBCs) via codes over the finite field F4. In this paper, we construct new full-diversity STBCs with cubic shaping property and low ML decoding complexity via codes over F4 for number of transmit antennas N = 2m, m >; 1, and rates R >; 1 complex symbols per channel use. The new codes have the least ML decoding complexity among all known codes for a large set of (N, R) pairs. The new full-rate codes of this paper (R = N) are not only information-lossless and fully diverse but also have the least known ML decoding complexity in the literature. For N ≥ 4, the new full-rate codes are the first instances of full-diversity, information-lossless STBCs with low ML decoding complexity. We also give a sufficient condition for STBCs obtainable from codes over F4 to have cubic shaping property, and a sufficient condition for any design to give rise to a full-diversity STBC when the symbols are encoded using rotated square QAM constellations.
Resumo:
Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFN gamma and TNF alpha levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens.
Resumo:
We propose a Low Noise Amplifier (LNA) architecture for power scalable receiver front end (FE) for Zigbee. The motivation for power scalable receiver is to enable minimum power operation while meeting the run-time performance needed. We use simple models to find empirical relations between the available signal and interference levels to come up with required Noise Figure (NF) and 3rd order Intermodulation Product (IIP3) numbers. The architecture has two independent digital knobs to control the NF and IIP3. Acceptable input match while using adaptation has been achieved by using an Active Inductor configuration for the source degeneration inductor of the LNA. The low IF receiver front end (LNA with I and Q mixers) was fabricated in 130nm RFCMOS process and tested.
Resumo:
It has been shown recently that the maximum rate of a 2-real-symbol (single-complex-symbol) maximum likelihood (ML) decodable, square space-time block codes (STBCs) with unitary weight matrices is 2a/2a complex symbols per channel use (cspcu) for 2a number of transmit antennas [1]. These STBCs are obtained from Unitary Weight Designs (UWDs). In this paper, we show that the maximum rates for 3- and 4-real-symbol (2-complex-symbol) ML decodable square STBCs from UWDs, for 2a transmit antennas, are 3(a-1)/2a and 4(a-1)/2a cspcu, respectively. STBCs achieving this maximum rate are constructed. A set of sufficient conditions on the signal set, required for these codes to achieve full-diversity are derived along with expressions for their coding gain.
Resumo:
L-PGlu-(2-proPyl)-L-His-L-ProNH(2) (NP-647) is a CNS active thyrotropin-releasing hormone (TRH) analog with potential application in various CNS disorders including seizures. In the present study, mechanism of action for protective effect of NP-647 was explored by studying role of NP-647 on epileptiform activity and sodium channels by using patch-clamp methods. Epileptiform activity was induced in subicular pyramidal neurons of hippocampal slice of rat by perfusing 4-aminopyridine (4-AP) containing Mg(+2)-free normal artificial cerebrospinal fluid (nACSF). Increase in mean firing frequency was observed after perfusion of 4-AP and zero Mg(+2) (2.10+/-0.47 Hz) as compared with nACSF (0.12+/-0.08 Hz). A significant decrease in mean firing frequency (0.61+/-0.22 Hz), mean frequency of epileptiform events (0.03+/-0.02 Hz vs. 0.22+/-0.05 Hz of 4-AP+0 Mg), and average number of action potentials in paroxysmal depolarization shift-burst (2.54+/-1.21 Hz vs. 8.16+/-0.88 Hz of 4-AP +0 Mg) was observed. A significant reduction in peak dV/dt (246+/-19 mV ms(-1) vs. 297 18 mV ms-1 of 4-AP+0 Mg) and increase (1.332+/-0.018 ms vs. 1.292+/-0.019 ms of 4-AP+0 Mg) in time required to reach maximum depolarization were observed indicating role of sodium channels. Concentration-dependent depression of sodium current was observed after exposure to dorsal root ganglion neurons to NP-647. NP-647 at different concentrations (1, 3, and 10 mu M) depressed sodium current (15+/-0.5%, 50+/-2.6%, and 75+/-0.7%, respectively). However, NP-647 did not show change in the peak sodium current in CNa18 cells. Results of present study demonstrated potential of NP-647 in the inhibition of epileptiform activity by inhibiting sodium channels indirectly. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The temperature ranges of thermal and athermal deformation behaviour of nickel are identified by employing the temperature-dependence of flow-stress and strain-rate cycling data. The results are used to present a unified view of dislocation mechanisms of glide encompassing the two thermally activated and the intermediate athermal regimes of plastic flow.In the low-temperature thermally activated region (<250 K) the strain rate is found to be controlled by the repulsive intersection of glide and forest dislocations, in accordance with current ideas. The athermal stress in this region can be attributed mainly to the presence of strong attractive junctions which are overcome by means of Orowan bowing, a small contribution also coming from the elastic interactions between dislocations. The values of activation area and activation energy obtained in the high-temperature region (> 750 K) negate the operation of a diffusion-controlled mechanism. Instead, the data support a thermal activation model involving unzipping of the attractive junctions. The internal (long-range) stress contribution here results solely from the elastic interactions between dislocations. This view concerning the high-temperature plastic flow is further supported by the observation that the Cottrell–Stokes law is obeyed over large strains in the range 750–1200 K.
Resumo:
We describe a blue/green inorganic material, Ba(3)(P(1-x)-Mn(x)O(4))(2) (I) based on tetrahedral MnO(4)(3-):3d(2) chromophore. The solid solutions (I) which are sky-blue and turquoise-blue for x <= 0.25 and dark green for x >= 0-50, are readily synthesized in air from commonly available starting materials, stabilizing the MnO(4)(3-) chromophore in an isostructural phosphate host. We suggest that the covalency/ionicity of P-O/Mn-O bonds in the solid solutions tunes the crystal field strength around Mn(V) such that a blue colour results for materials with small values of x. The material could serve as a nontoxic blue/green inorganic pigment.
Resumo:
The data obtained in the earlier parts of this series for the donor and acceptor end parameters of N-H. O and O-H. O hydrogen bonds have been utilised to obtain a qualitative working criterion to classify the hydrogen bonds into three categories: “very good” (VG), “moderately good” (MG) and weak (W). The general distribution curves for all the four parameters are found to be nearly of the Gaussian type. Assuming that the VG hydrogen bonds lie between 0 and ± la, MG hydrogen bonds between ± 1s̀ and ± 2s̀, W hydrogen bonds beyond ± 2s̀ (where s̀ is the standard deviation), suitable cut-off limits for classifying the hydrogen bonds in the three categories have been derived. These limits are used to get VG and MG ranges for the four parameters 1 and θ (at the donor end) and ± and ± (at the acceptor end). The qualitative strength of a hydrogen bond is decided by the cumulative application of the criteria to all the four parameters. The criterion has been further applied to some practical examples in conformational studies such as α-helix and can be used for obtaining suitable location of hydrogen atoms to form good hydrogen bonds. An empirical approach to the energy of hydrogen bonds in the three categories has also been presented.