446 resultados para 3-HYDROXY-3-METHYLGLUTARYL COENZYME
Resumo:
Contrary to that of phenyl derivative 1 the radical 4 adds to radicophiles in an inter- followed by intra-molecular radical Michael addition (radical annulation), furnishing a novel route to chiral isotwistanes 5.
Resumo:
The i.r. spectra of 1,3-thiazolidine-2-thione, ?2-selone and their N-deuteriated derivatives have been investigated in the region between 4000 and 20 cm?1. A complete assignment of the fundamental vibrational frequencies has been made based upon the normal coordinate analysis carried out using a simple Urey�Bradley force field supplemented by the valence force constants for the out-of-plane vibrations of the planar molecular skeleton. The proposed assignments are discussed in relation to the group frequencies in structurally related molecules and in terms of the computed potential energy distributions among the symmetry coordinates.
Resumo:
Eulytite compounds, A(3)Bi(XO4)(3) (X = P, A = Ca, Cd, Sr, Pb), belong to the noncentrosymmetric space group l (4) over bar 3d (No. 220) as determined by single-crystal X-ray diffraction studies. The crystals were grown from the melt-cool technique with considerable difficulty as the compounds melt incongruently at their melting temperature, except for the compound Pb3Bi(PO4)(3). The unit cell parameter a is 9.984(5), 9.8611(3), 10.2035(3), and 10.3722(2) angstrom for Ca3Bi(PO4)(3), Cd3Bi(PO4)(3), Sr3Bi(PO4)(3), and Pb3Bi(PO4)(3) respectively, and there are four formula units in the unit cell. The structure of Pb3Bi(VO4)(3), a unique eulytite with vanadium substitution, is compared with all these phosphorus substituted eulytites. The A(2+) and Bi3+ cations occupy the special position (16c) while the O anions occupy the general Wyckoff position (48e) in the crystal structure. Only one O position has been identified for Pb3Bi(PO4)(3) and Pb3Bi(VO4)(3), whereas two O atom sites were identified for Ca3Bi(PO4)(3), Cd3Bi(PO4)(3), and Sr3Bi(PO4)(3). The UV-vis diffuse reflectance spectra indicate large band gaps for all the phosphate eulytites while a lower band gap is observed for the vanadate eulytite. The feasibility of the use of these compounds in optoelectronic devices has been tested by measuring the second-harmonic generation (SHG) values which have been found to be of a magnitude equivalent to the commercially used KDP (KH2PO4).
Resumo:
Model building studies on poly(hydroxypro1ine) indicate that in addition to the well-known helical structure of form A, a left-handed helical structure with trans peptide units and with h = 2.86 A and n = 2.67 (i.e., 8 residues in 3 turns) is also possible. In this structure which is shown to be in agreement with X-ray data of the form B in the next paper, the y-hydroxyl group of an (i + 1)th Hyp residue is hydrogen bonded to the carbonyl oxygen of an (i - 1)th residue. The possibility of a structure with cis peptide units is ruled out. It is shown that both forms A and B are equally favorable from considerations of intramolecular energies. Since form B is further stabilized by intrachain hydrogen bonds, we believe that this is likely to be the ordered conformation for poly(hydroxypro1ine) in water.
Resumo:
A spanning tree T of a graph G is said to be a tree t-spanner if the distance between any two vertices in T is at most t times their distance in G. A graph that has a tree t-spanner is called a tree t-spanner admissible graph. The problem of deciding whether a graph is tree t-spanner admissible is NP-complete for any fixed t >= 4 and is linearly solvable for t <= 2. The case t = 3 still remains open. A chordal graph is called a 2-sep chordal graph if all of its minimal a - b vertex separators for every pair of non-adjacent vertices a and b are of size two. It is known that not all 2-sep chordal graphs admit tree 3-spanners This paper presents a structural characterization and a linear time recognition algorithm of tree 3-spanner admissible 2-sep chordal graphs. Finally, a linear time algorithm to construct a tree 3-spanner of a tree 3-spanner admissible 2-sep chordal graph is proposed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Reactions of group 6 metal carbonyls with bis(pyrazolyl) phosphazenes yield metal tricarbonyl complexes, [M(CO)3.L] [L = N3P3Ph4 (3, 5-Me2C3HN2)2 (1) or N3P3(MeNCH2CH2O)2 (3,5-Me2C3HN2)2(4)]. The structure of the complex [Mo(CO)3.1], determined by single-crystal X-ray analysis, shows that the (pyrazolyl) phosphazene acts as a tridentate ligand; the two pyridinic pyrazolyl nitrogen atoms and a phosphazene ring nitrogen atom are coordinated to the metal. A similar structure is proposed for the complexes [M(CO)3.4] (M = Mo or W] on the basis of their spectroscopic data.
Resumo:
The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.
Resumo:
DDQ oxidation of the spiroalcohol 7a gives exclusively a compound to which the 13a-methyl-13aH-7a, 15-methano-15H-dinaphtho[2,1-b:2',1'-e][1,4]-dioxepin structure 8a has been assigned on the basis of two-dimensional homonuclear (H-1-H-1) and heteronuclear (H-1-C-13; FUCOUP) correlation spectroscopy experiments. Similar oxidation of spiroalcohols 7b-h gives the dioxepin derivatives 8b-h.
Resumo:
Methanolic hydrogen chloride cyclization of the triketone 8, prepared from the Mannich base 7 and 2-methylcyclopentane-1,3-dione, gives ketones 9 and 10. NaBH4 reduction of 9 followed by Grignard reaction with CH3MgI affords the diol 12. Catalytic hydrogenation of 12 followed by PCC oxidation yields the ketoalcohol 13. Dehydration of 13 with SOCl2/pyridine results in a 1:1 mixture of the endo-14 and exo-15 olefins, separated by chromatography.
Resumo:
Grignard reaction followed by ozonolysis, or ozonolysis followed by Grignard reaction on the pentenoate 8, generates the diol 9. Cyclodehydration of 9 leads to the 3-oxacuparene (6), whereas PCC oxidation furnishes the 3-oxa-beta-cuparenone (7). Methanesulfonic acid-P2O5 transforms 7 into cyclopentenones 4, 5, known precursors to beta-cuparenone (3), and the naphthalenone 14.