537 resultados para silicotungstic acid hydrate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) cross-linked with ethylene glycol dimethacrylate (EGDMA) were synthesized by inverse suspension polymerization. The SAPs were swollen in DI water, and it was found that the equilibrium swelling capacities varied with the acrylamide content. The SAPs were subjected to reversible swelling/deswelling cycles in DI water and aqueous NaCl solution, respectively. The effect of the addition of an electrolyte on the swelling of the SAP was explored. The equilibrium swelling capacity of the SAPs was found to decrease with increasing concentration of added electrolyte in the swelling medium. The effect of the particle size of the dry SAPs on the swelling properties was also investigated. A first order model was used to describe the kinetics of swelling/deswelling, and the equilibrium swelling capacity, limiting swelling capacity, and swelling/deswelling rate coefficients were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the structural and pharmaceutical properties of different multicomponent crystalline forms of lamotrigine (LTG) with some pharmaceutically acceptable coformers viz. nicotinamide (1), acetamide (2), acetic acid (3), 4-hydroxy-benzoic acid (4) and saccharin (5). The structurally homogeneous phases were characterized in the solid state by DSC/TGA, FT-IR and XRD (powder and single crystal structure analysis) as well as in the solution phase. Forms 1 and 2 were found to be cocrystal hydrate and cocrystal, respectively, while in forms 3, 4 and 5, proton transfer was observed from coformer to drug. The enthalpy of formation of multicomponent crystals from their components was determined from the enthalpy of solution of the cocrystals and the components separately. Higher exothermic values of the enthalpy of formation for molecular complexes 3, 4 and 5 suggest these to be more stable than 1 and 2. The solubility was measured in water as well as in phosphate buffers of varying pH. The salt solvate 3 exhibited the highest solubility of the drug in water as well as in buffers over the pH range 7-3 while the cocrystal hydrate 1 showed the maximum solubility in a buffer of pH 2. A significant lowering of the dosage profile of LTG was observed for 1, 3 and 5 in the animal activity studies on mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of surface laser damage performed on a nonlinear optical crystal, urea L-malic acid, using 7 ns laser pulses at 10 Hz repetition rate from a Q-switched Nd:YAG laser at wavelengths of 532 and 1064 nm is reported. The single shot and multiple shot surface laser damage threshold values are determined to be 26.64±0.19 and 20.60±0.36 GW cm−2 at 1064 nm and 18.44±0.31 and 7.52±0.22 GW cm−2 at 532 nm laser radiation, respectively. The laser damage anisotropy is consistent with the Vickers mechanical hardness measurement performed along three crystallographic directions. The Knoop polar plot also reflects the damage morphology. Our investigation reveals a direct correlation between the laser damage profile and hardness anisotropy. Thermal breakdown of the crystal is identified as the possible mechanism of laser induced surface damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoclusters of Pt were electrochemically deposited on a conducting polymer, namely, poly(3,4-ethylenedioxythiophene) (PEDOT), which was also electrochemically deposited on carbon paper current collector. PEDOT facilitated uniform distribution of Pt nanoclusters, when compared with Pt electrodeposition on bare carbon paper substrate. Spectroscopy data indicated absence of any interaction between PEDOT and Pt. The electrochemically active surface area as measured from carbon monoxide adsorption followed by its oxidation was several times greater for Pt-PEDOT/C electrode in comparison with Pt/C electrode. The catalytic activity of Pt-PEDOT/C electrode for electrooxidation of formic acid was significantly greater than that of Pt/C electrode. Amperometry data suggested that the electrodes were stable for continuous oxidation of HCOOH.