396 resultados para Supercomputer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the literature, the impact angle control problem has been addressed mostly against lower speed or stationary targets. However, in the current defense scenario, targets of much higher speeds than interceptors are a reality. Moreover, approaching a higher speed target from a specified angle is important for effective seeker acquisition and enhanced warhead effectiveness. This paper proposes a composite proportional navigation guidance law using a combination of the standard proportional navigation and the recently proposed retroproportional navigation guidance laws for intercepting higher speed nonmaneuvering targets at specified impact angles in three-dimensional engagements. An analysis of the set of achievable impact angles by the composite proportional navigation guidance law is presented. It is shown that there exists an impulse bias that, when added to the composite proportional navigation guidance command, expands this set further by reversing the direction of the line-of-sight angular rotation vector. A bound on the magnitude of the bias is also derived. Finally, an implementation of this impulse bias, in the form of a series of pulses, is proposed and analyzed. Simulation results are also presented to support the analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human detection is a complex problem owing to the variable pose that they can adopt. Here, we address this problem in sparse representation framework with an overcomplete scale-embedded dictionary. Histogram of oriented gradient features extracted from the candidate image patches are sparsely represented by the dictionary that contain positive bases along with negative and trivial bases. The object is detected based on the proposed likelihood measure obtained from the distribution of these sparse coefficients. The likelihood is obtained as the ratio of contribution of positive bases to negative and trivial bases. The positive bases of the dictionary represent the object (human) at various scales. This enables us to detect the object at any scale in one shot and avoids multiple scanning at different scales. This significantly reduces the computational complexity of detection task. In addition to human detection, it also finds the scale at which the human is detected due to the scale-embedded structure of the dictionary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen bonds in biological macromolecules play significant structural and functional roles. They are the key contributors to most of the interactions without which no living system exists. In view of this, a web-based computing server, the Hydrogen Bonds Computing Server (HBCS), has been developed to compute hydrogen-bond interactions and their standard deviations for any given macromolecular structure. The computing server is connected to a locally maintained Protein Data Bank (PDB) archive. Thus, the user can calculate the above parameters for any deposited structure, and options have also been provided for the user to upload a structure in PDB format from the client machine. In addition, the server has been interfaced with the molecular viewers Jmol and JSmol to visualize the hydrogen-bond interactions. The proposed server is freely available and accessible via the World Wide Web at http://bioserver1.physics.iisc.ernet.in/hbcs/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crowd flow segmentation is an important step in many video surveillance tasks. In this work, we propose an algorithm for segmenting flows in H.264 compressed videos in a completely unsupervised manner. Our algorithm works on motion vectors which can be obtained by partially decoding the compressed video without extracting any additional features. Our approach is based on modelling the motion vector field as a Conditional Random Field (CRF) and obtaining oriented motion segments by finding the optimal labelling which minimises the global energy of CRF. These oriented motion segments are recursively merged based on gradient across their boundaries to obtain the final flow segments. This work in compressed domain can be easily extended to pixel domain by substituting motion vectors with motion based features like optical flow. The proposed algorithm is experimentally evaluated on a standard crowd flow dataset and its superior performance in both accuracy and computational time are demonstrated through quantitative results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salient object detection has become an important task in many image processing applications. The existing approaches exploit background prior and contrast prior to attain state of the art results. In this paper, instead of using background cues, we estimate the foreground regions in an image using objectness proposals and utilize it to obtain smooth and accurate saliency maps. We propose a novel saliency measure called `foreground connectivity' which determines how tightly a pixel or a region is connected to the estimated foreground. We use the values assigned by this measure as foreground weights and integrate these in an optimization framework to obtain the final saliency maps. We extensively evaluate the proposed approach on two benchmark databases and demonstrate that the results obtained are better than the existing state of the art approaches.